LeetCode第158场周赛:5224. 掷骰子模拟(动态规划)

5224. 掷骰子模拟

 显示英文描述 

我的提交返回竞赛

  • 用户通过次数126
  • 用户尝试次数270
  • 通过次数128
  • 提交次数488
  • 题目难度Medium

有一个骰子模拟器会每次投掷的时候生成一个 1 到 6 的随机数。

不过我们在使用它时有个约束,就是使得投掷骰子时,连续 掷出数字 i 的次数不能超过 rollMax[i]i 从 1 开始编号)。

现在,给你一个整数数组 rollMax 和一个整数 n,请你来计算掷 n 次骰子可得到的不同点数序列的数量。

假如两个序列中至少存在一个元素不同,就认为这两个序列是不同的。由于答案可能很大,所以请返回 模 10^9 + 7 之后的结果。

 

示例 1:

输入:n = 2, rollMax = [1,1,2,2,2,3]
输出:34
解释:我们掷 2 次骰子,如果没有约束的话,共有 6 * 6 = 36 种可能的组合。但是根据 rollMax 数组,数字 1 和 2 最多连续出现一次,所以不会出现序列 (1,1) 和 (2,2)。因此,最终答案是 36-2 = 34。

示例 2:

输入:n = 2, rollMax = [1,1,1,1,1,1]
输出:30

示例 3:

输入:n = 3, rollMax = [1,1,1,2,2,3]
输出:181

 

提示:

  • 1 <= n <= 5000
  • rollMax.length == 6
  • 1 <= rollMax[i] <= 15

思路:典型的动态规划题,定义dp[i][j][k]:前i位以j结尾并且最后k+1位是j的方案数。

class Solution {
	int mod = 1000000007;
    public int dieSimulator(int n, int[] rollMax) {
        int[][][] dp=new int[n+1][7][20];
        for(int i=0;i<rollMax.length;i++)
        	if(rollMax[i]!=0)
        		dp[0][i][0]=1;
        for(int i=1;i<n;i++)
        	for(int j=0;j<6;j++)
        			for(int k=0;k<=Math.min(i, rollMax[j]-1);k++)
        			{
        				if(k==0)
        				{
        					for(int h=0;h<6;h++)
        					{
        						if(j==h) continue;
        						else
        						{
        							for(int q=0;q<rollMax[h];q++)
        								dp[i][j][k]=(dp[i][j][k]+dp[i-1][h][q])%mod;
        						}
        					}
        				}
        				else
        					dp[i][j][k]=(dp[i][j][k]+dp[i-1][j][k-1])%mod;
        			}
        int ans=0;
        for(int i=0;i<6;i++)
        	for(int j=0;j<rollMax[i];j++)
        		ans=(ans+dp[n-1][i][j])%mod;
        return ans;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值