5224. 掷骰子模拟
显示英文描述
- 用户通过次数126
- 用户尝试次数270
- 通过次数128
- 提交次数488
- 题目难度Medium
有一个骰子模拟器会每次投掷的时候生成一个 1 到 6 的随机数。
不过我们在使用它时有个约束,就是使得投掷骰子时,连续 掷出数字 i
的次数不能超过 rollMax[i]
(i
从 1 开始编号)。
现在,给你一个整数数组 rollMax
和一个整数 n
,请你来计算掷 n
次骰子可得到的不同点数序列的数量。
假如两个序列中至少存在一个元素不同,就认为这两个序列是不同的。由于答案可能很大,所以请返回 模 10^9 + 7
之后的结果。
示例 1:
输入:n = 2, rollMax = [1,1,2,2,2,3] 输出:34 解释:我们掷 2 次骰子,如果没有约束的话,共有 6 * 6 = 36 种可能的组合。但是根据 rollMax 数组,数字 1 和 2 最多连续出现一次,所以不会出现序列 (1,1) 和 (2,2)。因此,最终答案是 36-2 = 34。
示例 2:
输入:n = 2, rollMax = [1,1,1,1,1,1] 输出:30
示例 3:
输入:n = 3, rollMax = [1,1,1,2,2,3] 输出:181
提示:
1 <= n <= 5000
rollMax.length == 6
1 <= rollMax[i] <= 15
思路:典型的动态规划题,定义dp[i][j][k]:前i位以j结尾并且最后k+1位是j的方案数。
class Solution {
int mod = 1000000007;
public int dieSimulator(int n, int[] rollMax) {
int[][][] dp=new int[n+1][7][20];
for(int i=0;i<rollMax.length;i++)
if(rollMax[i]!=0)
dp[0][i][0]=1;
for(int i=1;i<n;i++)
for(int j=0;j<6;j++)
for(int k=0;k<=Math.min(i, rollMax[j]-1);k++)
{
if(k==0)
{
for(int h=0;h<6;h++)
{
if(j==h) continue;
else
{
for(int q=0;q<rollMax[h];q++)
dp[i][j][k]=(dp[i][j][k]+dp[i-1][h][q])%mod;
}
}
}
else
dp[i][j][k]=(dp[i][j][k]+dp[i-1][j][k-1])%mod;
}
int ans=0;
for(int i=0;i<6;i++)
for(int j=0;j<rollMax[i];j++)
ans=(ans+dp[n-1][i][j])%mod;
return ans;
}
}