给你一个整数数组 target 。一开始,你有一个数组 A ,它的所有元素均为 1 ,你可以执行以下操作:
令 x 为你数组里所有元素的和
选择满足 0 <= i < target.size 的任意下标 i ,并让 A 数组里下标为 i 处的值为 x 。
你可以重复该过程任意次
如果能从 A 开始构造出目标数组 target ,请你返回 True ,否则返回 False 。
示例 1:
输入:target = [9,3,5]
输出:true
解释:从 [1, 1, 1] 开始
[1, 1, 1], 和为 3 ,选择下标 1
[1, 3, 1], 和为 5, 选择下标 2
[1, 3, 5], 和为 9, 选择下标 0
[9, 3, 5] 完成
示例 2:
输入:target = [1,1,1,2]
输出:false
解释:不可能从 [1,1,1,1] 出发构造目标数组。
示例 3:
输入:target = [8,5]
输出:true
提示:
N == target.length
1 <= target.length <= 5 * 10^4
1 <= target[i] <= 10^9
思路:这场比赛明显变难了,从第二题开始就不是一眼题,第四题比赛时水过去的,赛后看了一波谈论区,发现了一个比较好的解法:https://leetcode-cn.com/circle/discuss/0gO5RS/供大家参考!,这里我将它的解释贴出来:
class Solution {
public boolean isPossible(int[] target) {
if(target.length==1)
return target[0]==1;
long sum=0;
PriorityQueue<Long> q=new PriorityQueue<>((a,b)->(b-a)<0?-1:((b-a)==0?0:1));
for(int i=0;i<target.length;i++) {
q.add((long)target[i]);
sum+=target[i];
}
while(true) {
if(q.peek()==1)
return true;
long p=q.poll();
if(q.peek()==1)
return (p-1)%(sum-p)==0;
else {
long num=(p-q.peek())/(sum-p)+1;
long x=p-(sum-p)*num;
sum=p-(sum-p)*(num-1);
if(x<=0) return false;
q.add(x);
}
}
}
}