在显示着数字的坏计算器上,我们可以执行以下两种操作:
双倍(Double):将显示屏上的数字乘 2;
递减(Decrement):将显示屏上的数字减 1 。
最初,计算器显示数字 X。
返回显示数字 Y 所需的最小操作数。
示例 1:
输入:X = 2, Y = 3
输出:2
解释:先进行双倍运算,然后再进行递减运算 {2 -> 4 -> 3}.
示例 2:
输入:X = 5, Y = 8
输出:2
解释:先递减,再双倍 {5 -> 4 -> 8}.
示例 3:
输入:X = 3, Y = 10
输出:3
解释:先双倍,然后递减,再双倍 {3 -> 6 -> 5 -> 10}.
示例 4:
输入:X = 1024, Y = 1
输出:1023
解释:执行递减运算 1023 次
提示:
1 <= X <= 10^9
1 <= Y <= 10^9
思路:对于本题的两种操作,难点在于什么时候执行减一操作,因为我们能够清楚一点的是无脑执行乘2操作后当X大于Y再执行减一操作一定不会在任何情况下最优。因为假如我们在某个地方提前执行减1操作后,再执行若干次乘2操作后,发现我们的减1操作此时的贡献就不止单单减了1这么简单了,例如:((X-1)*2-1)*2*2,=Y的话,你会发现有-4和-8,因此我们的贪心思想就是尽可能少的执行减一操作,这个减一操作的执行时间按照前面所述可以转化为我们减去2的幂。理解这个地方这里是至关重要的。
class Solution {
public int brokenCalc(int X, int Y) {
if(Y<=X) return X-Y;
int ans=0;
int[] a=new int[32];
a[0]=1;
for(int i=1;i<31;i++)
a[i]=a[i-1]*2;
while(X<Y) {
ans++;
X*=2;
}
int sum=ans;
for(int i=sum;i>0;i--) {
ans+=(X-Y)/a[i];
X-=(X-Y)/a[i]*a[i];
}
return ans+X-Y;
}
}