基准时间限制:1 秒 空间限制:131072 KB 分值: 40
难度:4级算法题
给定一棵n个节点的树,从1到n标号。选择k个点,你需要选择一些边使得这k个点通过选择的边联通,目标是使得选择的边数最少。
现需要计算对于所有选择k个点的情况最小选择边数的总和为多少。
样例解释:
一共有三种可能:(下列配图蓝色点表示选择的点,红色边表示最优方案中的边)
选择点{1,2}:至少要选择第一条边使得1和2联通。
选择点{1,3}:至少要选择第二条边使得1和3联通。
选择点{2,3}:两条边都要选择才能使2和3联通。
Input
第一行两个数n,k(1<=k<=n<=100000) 接下来n-1行,每行两个数x,y描述一条边(1<=x,y<=n)
Output
一个数,答案对1,000,000,007取模。
Input示例
3 2 1 2 1 3
Output示例
4
﹡ LH
(题目提供者)
C++的运行时限为:1000 ms ,空间限制为:131072 KB
示例及语言说明请按这里
允许其他 AC 的用户查看此代码,分享代码才能查看别人的代码并有机会获得勋章
跟之前的两道题都类似,还是求每条边的贡献,仍然dfs两次
每条边的贡献是C(n,k)-C(son[x],k)-C(n-son[x],k); 大数组合数用到逆元。
#include<set>
#include<map>
#include<stack>
#include<queue>
#include<vector>
#include<string>
#include<math.h>
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
#include<functional>
using namespace std;
#define ll long long
#define inf 1000000000
#define mod 1000000007
#define maxn 100005
#define lowbit(x) (x&-x)
#define eps 1e-9
ll fac[maxn],inv[maxn],son[maxn],ans,n,k;
vector<int>q[maxn];
ll Pow(ll a,ll b)
{
ll ans=1;
while(b)
{
if(b&1)
ans=(ans*a)%mod;
a=(a*a)%mod;
b>>=1;
}
return ans;
}
void init()
{
fac[0]=inv[0]=1;
for(int i=1;i<=100002;i++)
{
fac[i]=(fac[i-1]*i)%mod;
inv[i]=Pow(fac[i],mod-2);
}
}
ll work(ll a,ll b)
{
if(a<b)
return 0;
if(a==b)
return 1;
return fac[a]*inv[b]%mod*inv[a-b]%mod;
}
ll dfs1(int u,int p)
{
int i;son[u]=1;
for(i=0;i<q[u].size();i++)
{
int v=q[u][i];
if(v==p)
continue;
son[u]+=dfs1(v,u);
}
return son[u];
}
void dfs2(int u,int p)
{
int i;
for(i=0;i<q[u].size();i++)
{
int v=q[u][i];
if(v==p)
continue;
ans=(ans+work(n,k)-work(son[v],k)-work(n-son[v],k))%mod;
if(ans<0)
ans+=mod;
dfs2(v,u);
}
}
int main(void)
{
init();
int x,y,i;
scanf("%lld%lld",&n,&k);
for(i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
q[x].push_back(y);
q[y].push_back(x);
}
dfs1(1,0);dfs2(1,0);
printf("%lld\n",ans);
return 0;
}