51nod 1677 treecnt(逆元求组合数+求贡献)

基准时间限制:1 秒 空间限制:131072 KB 分值: 40  难度:4级算法题
 收藏
 关注

给定一棵n个节点的树,从1到n标号。选择k个点,你需要选择一些边使得这k个点通过选择的边联通,目标是使得选择的边数最少。

现需要计算对于所有选择k个点的情况最小选择边数的总和为多少。

样例解释:


一共有三种可能:(下列配图蓝色点表示选择的点,红色边表示最优方案中的边)

选择点{1,2}:至少要选择第一条边使得1和2联通。

 

选择点{1,3}:至少要选择第二条边使得1和3联通。


 

选择点{2,3}:两条边都要选择才能使2和3联通。


 


Input
第一行两个数n,k(1<=k<=n<=100000)
接下来n-1行,每行两个数x,y描述一条边(1<=x,y<=n)
Output
一个数,答案对1,000,000,007取模。
Input示例
3 2
1 2
1 3
Output示例
4
﹡    LH  (题目提供者)
C++的运行时限为:1000 ms ,空间限制为:131072 KB  示例及语言说明请按这里

 允许其他 AC 的用户查看此代码,分享代码才能查看别人的代码并有机会获得勋章


跟之前的两道题都类似,还是求每条边的贡献,仍然dfs两次

每条边的贡献是C(n,k)-C(son[x],k)-C(n-son[x],k);  大数组合数用到逆元。

#include<set>
#include<map>   
#include<stack>          
#include<queue>          
#include<vector>  
#include<string>
#include<math.h>          
#include<stdio.h>          
#include<iostream>          
#include<string.h>          
#include<stdlib.h>  
#include<algorithm> 
#include<functional>  
using namespace std;          
#define ll long long       
#define inf  1000000000     
#define mod 1000000007           
#define maxn  100005
#define lowbit(x) (x&-x)          
#define eps 1e-9
ll fac[maxn],inv[maxn],son[maxn],ans,n,k;
vector<int>q[maxn];
ll Pow(ll a,ll b)    
{    
    ll ans=1;    
    while(b)    
    {    
        if(b&1)    
            ans=(ans*a)%mod;    
        a=(a*a)%mod;    
        b>>=1;    
    }    
    return ans;    
}    
void init()
{
	 fac[0]=inv[0]=1;    
    for(int i=1;i<=100002;i++)    
    {    
        fac[i]=(fac[i-1]*i)%mod;
        inv[i]=Pow(fac[i],mod-2);    
    }    
}
ll work(ll a,ll b)
{
	if(a<b)
		return 0;
	if(a==b)
		return 1;
	return fac[a]*inv[b]%mod*inv[a-b]%mod;
}
ll dfs1(int u,int p)  
{  
    int i;son[u]=1;  
    for(i=0;i<q[u].size();i++)  
    {  
        int v=q[u][i];  
        if(v==p)  
            continue;  
        son[u]+=dfs1(v,u);  
    }  
    return son[u];  
}  
void dfs2(int u,int p)
{
	int i;
	for(i=0;i<q[u].size();i++)
	{
		int v=q[u][i];
		if(v==p)
			continue;
		ans=(ans+work(n,k)-work(son[v],k)-work(n-son[v],k))%mod;
		if(ans<0)
			ans+=mod;
		dfs2(v,u);
	}
}
int main(void)
{
	init();
	int x,y,i;
	scanf("%lld%lld",&n,&k);
	for(i=1;i<n;i++)
	{
		scanf("%d%d",&x,&y);
		q[x].push_back(y);
		q[y].push_back(x);
	}
	dfs1(1,0);dfs2(1,0);
	printf("%lld\n",ans);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值