BZOJ 1047: [HAOI2007]理想的正方形(单调队列)

1047: [HAOI2007]理想的正方形

Time Limit: 10 Sec   Memory Limit: 162 MB
Submit: 3510   Solved: 1933
[ Submit][ Status][ Discuss]

Description

  有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值
的差最小。

Input

  第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非负整数,表示矩阵中相应位置上的数。每
行相邻两数之间用一空格分隔。
100%的数据2<=a,b<=1000,n<=a,n<=b,n<=1000

Output

  仅一个整数,为a*b矩阵中所有“n*n正方形区域中的最大整数和最小整数的差值”的最小值。

Sample Input

5 4 2
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2

Sample Output

1

HINT

Source


题解:我们可以枚举每一个数,然后求出数到左边n个数的最小值和最大值。

可以用单调队列维护。然后再按照每一列求之前维护的最大最小值。

这样我们便能将矩阵的最优解化成一个点的最优解,共用了4次单调队列。

我们可以用数组模拟单调队列即可。

#include<set>  
#include<map>     
#include<stack>            
#include<queue>            
#include<vector>    
#include<string> 
#include<time.h>
#include<math.h>            
#include<stdio.h>            
#include<iostream>            
#include<string.h>            
#include<stdlib.h>    
#include<algorithm>   
#include<functional>    
using namespace std;            
#define ll long long      
#define inf 1000000000       
#define mod 1000000007             
#define maxn  1005
#define lowbit(x) (x&-x)            
#define eps 1e-9
int r,c,n,maxs[maxn][maxn],mins[maxn][maxn];
int a[maxn][maxn],ans=2147483647;
struct node
{
	int x,id;
};
int main(void)
{
	int i,j;
	scanf("%d%d%d",&r,&c,&n);
	for(i=1;i<=r;i++)
		for(j=1;j<=c;j++)
			scanf("%d",&a[i][j]);
	for(i=1;i<=r;i++)
	{
		node s[maxn];
		int st=1,ed=0;
		for(j=1;j<=n;j++)
		{
			while(st<=ed && s[ed].x<=a[i][j])
				ed--;
			ed++;
			s[ed].x=a[i][j];
			s[ed].id=j;
		}
		maxs[i][n]=s[st].x;
		for(j=n+1;j<=c;j++)
		{
			while(st<=ed && s[ed].x<=a[i][j])
				ed--;
			ed++;
			s[ed].x=a[i][j];
			s[ed].id=j;
			while(st<=ed && s[st].id<=j-n)
				st++;
			maxs[i][j]=s[st].x;
		}
		st=1;ed=0;
		for(j=1;j<=n;j++)
		{
			while(st<=ed && s[ed].x>=a[i][j])
				ed--;
			ed++;
			s[ed].x=a[i][j];
			s[ed].id=j;
		}
		mins[i][n]=s[st].x;
		for(j=n+1;j<=c;j++)
		{
			while(st<=ed && s[ed].x>=a[i][j])
				ed--;
			ed++;
			s[ed].x=a[i][j];
			s[ed].id=j;
			while(st<=ed && s[st].id<=j-n)
				st++;
			mins[i][j]=s[st].x;
		}
	}
	for(j=n;j<=c;j++)
	{
		node q1[maxn],q2[maxn];
		int st1=1,ed1=0,st2=1,ed2=0;
		for(i=1;i<=n;i++)
		{
			while(st1<=ed1 && q1[ed1].x<=maxs[i][j])
				ed1--;
			ed1++;
			q1[ed1].x=maxs[i][j];
			q1[ed1].id=i;
			while(st2<=ed2 && q2[ed2].x>=mins[i][j])
				ed2--;
			ed2++;
			q2[ed2].x=mins[i][j];
			q2[ed2].id=i;
		}
		if(q1[st1].x-q2[st2].x<ans)
			ans=q1[st1].x-q2[st2].x;
		for(i=n+1;i<=r;i++)
		{
			while(st1<=ed1 && q1[ed1].x<=maxs[i][j])
				ed1--;
			ed1++;
			q1[ed1].x=maxs[i][j];
			q1[ed1].id=i;
			while(st1<=ed1 && q1[st1].id<=i-n)
				st1++;
			while(st2<=ed2 && q2[ed2].x>=mins[i][j])
				ed2--;
			ed2++;
			q2[ed2].x=mins[i][j];
			q2[ed2].id=i;
			while(st2<=ed2 && q2[st2].id<=i-n)
				st2++;
			if(q1[st1].x-q2[st2].x<ans)
				ans=q1[st1].x-q2[st2].x;
		}
	}
	printf("%d\n",ans);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值