经典题:一个整数分解为连续正整数之和

为了找份暑期实习生的工作,今天去某公司面试。很喜欢这样的公司,首先不问出身、不问爱好,直接给你一台电脑,几道编程题目,让你写程序。

其中有道题目是将一个整数分解为连续正整数之和,如15可以分解为:

15 = 1 + 2 + 3 + 4 + 5

15 = 4 + 5 + 6

15 = 7 + 8

这道题,我用最死板的方法给编出来了。输入数n,设置起始位置i,再遍历连续正整数的长度k,由公式计算出 sum = i + (i+1) + ... + (i+k) = (k+1) * (2*i + k) / 2,判断与n的关系,若相等则打印出从i到i+k这(k+1)个数;若sum>n,则break;

伪码如下:

for  (i = 1; i <= n/2; i++)
	for  (k = 1;  ; k++)
		sum = (k+1) * (2*i + k) / 2;
			if (sum > n)
				break;
			if (sum == n)
				print (从i到i+k的值)

但这算法的复杂度高呀!达到O(n2)!肯定不是最好的方法,回来我在网上找了一下这个题目,发现有很多解法,说一个比较容易理解的吧。

我们计算从i开始连续k个数之和的计算公式如下:

sum = k * (2 * i + k - 1) / 2;

现在题目要求sum == n 的所有可能情况,上面的解法是从起始位置开始循环,又根据连续个数循环,两重循环,那么从上面的公式逆向想想,如果sum==n时,i与k直接满足什么关系呢?有 k * (2 * i + k - 1) = 2 * n。那么如果用k循环,计算出起始位置 i = ( 2*n / k - k + 1) / 2,岂不是时间复杂度降到线性的了。如下:

for (k = 1; k <= n/2; k++)
	if (2*n % k == 0)      //能被k整除
		temp = 2*n / k - k + 1;
		if (temp % 2 == 0)      //能被2整除
			i = temp / 2;
			print (从i到i+k-1的值)

ok!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值