神经网络
文章平均质量分 59
查无此人☞
这个作者很懒,什么都没留下…
展开
-
CosineAnnealingLR
记录一下CosineAnnealingLR调整学习率这种策略: import torch import torch.nn as nn from torch.optim.lr_scheduler import CosineAnnealingLR import itertools import matplotlib.pyplot as plt initial_lr = 0.1 class model(nn.Module): def __init__(self): super().原创 2021-12-17 22:57:47 · 2967 阅读 · 0 评论 -
Resnet网络实战之Fashion-MNIST数据集
残差网络的由来(Resnet) 在实践中,添加过多的层后训练误差往往不降反升。即使利用批量归一化带来的数值稳定性使训练深层模型更加容易,该问题仍然存在。针对这一问题,何恺明等人提出了残差网络(ResNet)。它在2015年的ImageNet图像识别挑战赛夺魁,并深刻影响了后来的深度神经网络的设计。下面通过Fashion-MNIST数据集来了解一下Resnet网络。 普通的网络结构与加入残差连接的网络结构对比 设输入为x。假设我们希望学出的理想映射为f(x),从而作为图最上方激活函数的输入。左图虚线框中的部.原创 2021-05-17 20:20:24 · 3235 阅读 · 3 评论