Python 查看pytorch版本、判断CUDA是否可用

本文介绍如何检查PyTorch版本、确认CUDA是否可用及其版本,并演示了如何获取当前系统中可用的CUDA设备数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在深度学习跑论文代码的时候,安装好环境后,经常会验证torch的版本、以及torch与cuda版本是否对应cuda是否可用、以及torch对应的cuda的版本。代码如下!

import torch
print(torch.__version__)
print(torch.cuda.is_available())

结果如图:
在这里插入图片描述
也可查看可行的cuda数目:

print(torch.cuda.device_count())

在这里插入图片描述
查看torch对应的cuda版本:

torch.version.cuda

在这里插入图片描述

<think>好的,我需要回答用户如何查看PyTorchCUDA版本的问题。首先,我得回忆一下相关的命令。记得在PyTorch中,可以通过`torch.__version__`来获取PyTorch版本,而CUDA版本则是通过`torch.version.cuda`来查看的。对了,用户可能还想确认CUDA是否可用,这时候可以用`torch.cuda.is_available()`。 接下来,我需要确保这些命令的正确性。比如,用户运行`print(torch.version.cuda)`可能会返回类似'11.3'这样的字符串,而如果返回None,说明PyTorch可能没有安装CUDA支持。另外,使用`nvcc --version`可以查看系统安装的CUDA版本,但要注意这可能和PyTorch使用的CUDA版本不同,特别是在有多个CUDA版本的环境下。 然后,用户的问题可能还涉及到如何验证PyTorch是否真的能使用CUDA。这时候需要检查`torch.cuda.is_available()`的输出是否为True,并且确保PyTorch安装的是GPU版本。如果是通过conda或pip安装的,需要确认安装命令是否包含cu相关的版本号,比如`pip install torch==1.9.0+cu111`。 还要考虑用户可能的错误情况,比如安装了CPU版本PyTorch,这时候即使系统有CUDA,`torch.cuda.is_available()`也会返回False。所以需要提醒用户检查安装方式。 最后,根据用户提供的引用内容,引用[1]和[2]正好对应查看CUDA版本和验证CUDA可用性的方法,而引用[3]可能和扩展功能相关,暂时用不上。所以需要正确标注这些引用,确保用户能清楚信息来源。</think>### 如何查看PyTorchCUDA版本信息 #### 1. 查看PyTorch版本Python环境中运行以下代码: ```python import torch print("PyTorch版本:", torch.__version__) ``` 这会直接输出当前安装的PyTorch版本,例如:`1.12.1`。 --- #### 2. 查看PyTorch使用的CUDA版本 PyTorch可能内置了特定版本CUDA驱动库。运行以下代码查看: ```python print("PyTorch关联的CUDA版本:", torch.version.cuda) ``` 若输出为`11.3`,表示当前PyTorch编译时绑定的CUDA版本为11.3[^1]。 **注意**:若返回`None`,说明当前安装的是CPU版本PyTorch。 --- #### 3. 验证CUDA是否可用 检查PyTorch能否调用CUDA加速: ```python print("CUDA是否可用:", torch.cuda.is_available()) ``` 若输出为`True`,表示PyTorch可以正常使用GPU加速[^2]。 --- #### 4. 查看系统安装的CUDA版本(独立于PyTorch) 在终端运行以下命令: ```bash nvcc --version ``` 这会显示系统全局安装的CUDA工具包版本(例如`CUDA 11.6`)。需注意此版本可能与PyTorch绑定的CUDA版本不同。 --- ### 常见问题排查 - **PyTorch无法识别CUDA**:需确认安装的是GPU版本PyTorch(如通过`conda install pytorch cudatoolkit=11.3 -c pytorch`安装)。 - **版本不匹配**:若系统CUDA版本PyTorch内置版本不一致,需重新安装匹配的PyTorch版本
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值