数论总结_上

定义定理与猜想

一、整数

定义

良序性质

每个非空的正整数集合都有一个最小的元

有理数与无理数

如果存在整数 q , p ≠ 0 q,p \neq 0 q,p=0使得 r = p / q r=p/q r=p/q则称实数 r r r 为有理数,否则 r r r 为无理数

代数数

a a a 为代数数,如果它是整系数多项式的根
也就是说, a a a 是代数数,如果存在整数 a 0 , . . . , a n a_0,...,a_n a0,...,an使得 a n a n + a n − 1 a n − 1 + . . . + a 0 = 0 a_na^n+a_{n-1}a^{n-1}+... + a_0=0 anan+an1an1+...+a0=0
如果 a a a 不是代数数,则 a a a 是超越数

最大整数函数

实数 x x x 中的最大整数记为 [ x ] [x] [x] ,是小于或等于 x x x 的最大整数,满足 [ x ] ≤ x < [ x ] + 1 [x] \leq x < [x]+1 [x]x<[x]+1 的整数
最大整数函数也被叫做取整函数,也用 ⌊ x ⌋ \lfloor x \rfloor x来代替 如 ⌊ 5 / 2 ⌋ = [ 5 / 2 ] = 2 \lfloor 5/2 \rfloor = [5/2] = 2 5/2=[5/2]=2
上整数函数为 ⌈ x ⌉ \lceil x \rceil x ⌈ 5 / 2 ⌉ = 3 \lceil 5/2 \rceil = 3 5/2=3

分数部分

实数 x x x 的分数部分记为 { x } \{x\} {x},即 { x } = x − [ x ] \{x\}=x-[x] {x}=x[x]

等比序列

形如 a , a r , a r 2 , a r 3 . . . a,ar,ar^2,ar^3... a,ar,ar2,ar3...的序列,其中初始项 a a a 和公比 r r r 都是实数

可数与不可数

一个集合可数,如果它是有限的或者是无穷的但与正整数集合之间存在一个一一映射,如果集合不是可数的,则称为不可数

阶乘

n n n 为正整数, 则 n ! n! n!是整数 1 , 2 , . . . , n 1,2,...,n 1,2,...,n 的积,特别的定义 0 ! = 1 0!=1 0!=1,采用成绩符号,我们有 n ! = ∏ j = 1 n j n!=\prod^n_{j=1}j n!=j=1nj

递归定义

我们说函数 f f f 是递归定义的,如果指定了 f f f 在1处的值,而且对于任意正整数 n n n 都提供了一个规则来根据 f ( n ) f(n) f(n) 确定 f ( n + 1 ) f(n+1) f(n+1)

斐波那契序列

有如下递归定义: f 1 = 1 , f 2 = 1 f_1=1,f_2=1 f1=1,f2=1 且对 n ≥ 3 , f n = f n − 1 + f n − 2 n \geq 3, f_n=f_{n-1}+f_{n-2} n3,fn=fn1+fn2
这个序列中的项被称为斐波那契数

∑ k = 1 n f k = f n + 2 − 1 \sum^{n}_{k=1} f_k = f_{n+2}-1 k=1nfk=fn+21

整除性

如果 a a a b b b 为整数且 a ≠ 0 a\neq0 a=0,我们说 a a a 整除 b b b 是指存在整数 c c c 使得 b = a c b=ac b=ac. 如果 a a a 整除 b b b ,我们还称 a a a b b b 的一个因子, 且称 b b b a a a 的倍数
如果 a a a 整除 b b b 则将其记为 a ∣ b a \mid b ab,如果 a a a 不能整除 b b b,则记其为 a ∤ b a \nmid b ab

偶数与奇数

如果 n n n 被2除的余数余数是0,则对某个整数 k k k n = 2 k n=2k n=2k,我们称 n n n 为偶数,而如果 n n n 被2除的余数是1,则对某个整数 k k k n = 2 k + 1 n=2k+1 n=2k+1 我们称 n n n 为奇数

最大公因子

不全为零的整数 a a a b b b 的最大公因子是指能够同时整除 a a a b b b 的最大整数

互素

a , b a,b a,b均为非零整数,如果 a a a b b b 的最大公因子 ( a , b ) = 1 (a,b)=1 (a,b)=1, 这样的数被称为互素

定理

1.2 鸽笼原理

如果把 k + 1 k+1 k+1个或者更多的物体放入 k k k 个盒子中,那么至少有一个盒子中有两个或者更多的物体

1.3 狄利克雷逼近定理

如果 α \alpha α是一个实数, n n n 是一个正整数,则存在整数 a a a b b b 1 ≤ a ≤ n 1 \leq a \leq n 1an 使得 ∣ a α − b ∣ < 1 / n |a \alpha -b| < 1/n aαb<1/n

1.4 有理数集合是可数的
1.5 数学归纳法原理(弱归纳)

一个包含整数1的正整数集合如果具有如下性质,即若其包含整数 k k k ,则其也包含整数 k + 1 k+1 k+1 ,那么这个集合一定是所有正整数的集合

1.6 第二数学归纳原理

对于包含1的正整数集合,如果它具有下述性质:对每一个正整数 n n n ,如果它包含全体正整数 1 , 2 , . . . , n 1,2,...,n 1,2,...,n , 则它也包含整数 n + 1 n+1 n+1,那么这个集合一定是由所有正整数构成的集合

1.7 斐波那契数列推论

n n n 是正整数, α = 1 + 5 2 , β = 1 − 5 2 \alpha =\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2} α=21+5 β=215 ,则第 n n n 个斐波那契数 f n f_n fn
f n = 1 5 ( α n − β n ) f_n=\frac{1}{\sqrt{5}}(\alpha^n - \beta^n) fn=5 1(αnβn)

1.8 如果 a , b , c a, b, c a,b,c 是整数,且 a ∣ b a \mid b ab , $b \mid c $, 则 a ∣ c a \mid c ac
1.9 如果 a , b , m , n a,b,m,n a,b,m,n为整数,且 $c \mid a , , c \mid b$ 则 c ∣ ( m a + n b ) c \mid (ma+nb) c(ma+nb)
1.10 带余除法

如果 a a a b b b 是整数且 b > 0 b>0 b>0,则存在唯一的整数 q q q r r r使得 a = b q + r , 0 ≤ r < b a=bq+r, 0 \leq r < b a=bq+r0r<b
其中 q q q 为商, r r r 为余数

二、整数的表示法和运算

定义

位运算复杂度(兰道符号)

S S S 是一个指定的实数集合,如果 f f f g g g 为取正值的函数,且对所有的 x ∈ S x \in S xS 有定义,则如果存在正常数 K K K 是的对于所有充分大的 x ∈ S x \in S xS 均有 f ( x ) ∈ K g ( x ) f(x) \in Kg(x) f(x)Kg(x), 那么 f f f S S S 上是 $ O(g) $的

定理

2.1 整数表示法

b b b 是正整数, b > 1 b>1 b>1 则每个正整数 n n n 都可以被唯一的写为如下形式:
n = a k b k + a k − 1 b k − 1 + . . . + a 1 b + a 0 n=a_kb^k+a_{k-1}b^{k-1} + ... + a_1b + a_0 n=akbk+ak1bk1+...+a1b+a0
其中 k k k 为非负整数, a j a_j aj为整数, 0 ≤ a j ≤ b − 1 ( j = 0 , 1 , . . . , k ) 0 \leq a_j \leq b-1 (j=0,1,...,k) 0ajb1(j=0,1,...,k)且首项系数 a k ≠ 0 a_k \neq 0 ak=0

2.1.1 每一个正整数都可以被表示为2的不同幂次的和
2.2 如果 f f f O ( g ) O(g) O(g) 的, c c c 是正常数,则 c f cf cf O ( g ) O(g) O(g)
2.3 如果 f 1 f_1 f1 O ( g 1 ) O(g_1) O(g1) 的, f 2 f_2 f2 O ( g 2 ) O(g_2) O(g2) 的,则 f 1 + f 2 f_1+f_2 f1+f2 O ( g 1 + g 2 ) O(g_1+g_2) O(g1+g2)的,且 f 1 f 2 f_1f_2 f1f2 O ( g 1 g 2 ) O(g_1g_2) O(g1g2)
2.3.1 如果 f 1 f_1 f1 f 2 f_2 f2 O ( g ) O(g) O(g)的,则 f 1 + f 2 f_1+f_2 f1+f2 O ( g ) O(g) O(g)
2.4 两个 n n n位整数的乘法可以用 O ( n l o g 2 3 ) O(n^{log_23}) O(nlog23)次位运算实现
2.5 给定一正数 ϵ > 0 \epsilon >0 ϵ>0m,存在计算两个 n位整数的乘积的算法,只需要 O ( n 1 + ϵ ) O(n^{1+\epsilon}) O(n1+ϵ) 次位运算
2.6 存在计算两个n位整数乘积的算法,该算法只使用 O ( n l o g 2 n l o g 2 l o g 2 n ) O(nlog_2nlog_2log_2n) O(nlog2nlog2log2n) 次位运算
2.7 当 2n 位整数 a 被整数 b (不超过n位)除时,有使用 O ( M ( n ) ) O(M(n)) O(M(n))次位运算求商 q = [ a / b ] q=[a/b] q=[a/b]的算法,其中 M ( n ) M(n) M(n)是求两个 n 位整数乘积所需的位运算次数

三、素数和最大公因子

素数的分析基于几个思路

  1. 素数是否有无穷多个?
  2. 如何确定一个数是素数?
  3. 给定一个数,小于等于这个数的素数有多少个?
  4. 素数有什么同一的表达方式么?
  5. 素数分布的间隔有什么规律?

定义

素数

素数是大于1的正整数,并且除了1和它本身外不能被其他正整数所整除

合数

大于1的不是素数的正整数称为合数

线性组合

如果 a,b是整数,那么他们的线性组合具有形式 m a + n b ma+nb ma+nb,其中 m,n都是整数

最大公因子

a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an是不全为零的整数,这些整数的公因子中最大的整数就是最大公因子。记为 ( a 1 , a 2 , . . . , a n ) (a_1,a_2,...,a_n) (a1,a2,...,an)

互素与两两互素

如果 ( a 1 , a 2 , . . . , a n ) = 1 (a_1,a_2,...,a_n)=1 (a1,a2,...,an)=1,那么我们说整数 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an 互素,如果对于整数集中每对整数 a i , a j , i ≠ j a_i,a_j,i\neq j ai,aj,i=j ( a i , a j ) = 1 (a_i,a_j)=1 (ai,aj)=1 即整数集中任意一对整数都互素,那么我们就说这些整数两两互素

既约分数

p , q p,q p,q 均为整数且互素,则 p / q p/q p/q 为既约分数

最小公倍数

两个非零整数 a , b a,b a,b 的最小公倍数是能够被 a a a b b b 整除的最小正整数

引理

3.1 每一个大于1的正整数都有一个素因子
3.2 如果 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an是不全为零的整数,那么 ( a 1 , a 2 , . . . , a n − 1 , a n ) = ( a 1 , a 2 , . . . , ( a n − 1 , a n ) ) (a_1,a_2,...,a_{n-1},a_n)=(a_1,a_2,...,(a_{n-1},a_n)) (a1,a2,...,an1,an)=(a1,a2,...,(an1,an))
3.3 如果 e e e d d d 是整数且 e = d q + r e=dq+r e=dq+r ,其中 q , r q,r q,r是整数,那么 ( e , d ) = ( d , r ) (e,d)=(d,r) (e,d)=(d,r)
3.4 如果a,b,c是正整数,满足 ( a , b ) = 1 (a,b)=1 (a,b)=1 a ∣ b c a|bc abc a ∣ c a|c ac
3.5 如果p整除 a 1 a 2 . . . a n a_1a_2...a_n a1a2...an,其中p为素数,且 a 1 a 2 . . . a n a_1a_2...a_n a1a2...an是正整数,则存在整数 i , 1 ≤ i ≤ n i,1 \leq i \leq n i,1in,使得 p p p整除 a i a_i ai
3.6 如果 x x x y y y 为实数,则 m a x ( x , y ) + m i n ( x , y ) = x + y max(x,y)+min(x,y)=x+y max(x,y)+min(x,y)=x+y
3.7 设 m , n m,n m,n为互素的正整数,那么如果 d d d m n mn mn 的一个正因子,则存在唯一的一对 m m m 的正因子 d 1 d_1 d1 n n n 的正因子 d 2 d_2 d2 使得 d = d 1 d 2 d=d_1d_2 d=d1d2 反之,如果 d 1 d_1 d1 d 2 d_2 d2 分别是 m m m n n n 的正因子, 则 d = d 1 d 2 d=d_1d_2 d=d1d2 m n mn mn 的正因子
3.8 如果 a a a b b b 都是形如 4 n + 1 4n+1 4n+1 的整数,则乘积 a b ab ab 也是这种形式的
3.9 如果 n n n 是一个正的奇数,那么 n n n 分解为两个正整数的积和表示成两个平方和的差是一一对应的
3.10 设 F k = 2 2 k + 1 F_k=2^{2^k}+1 Fk=22k+1 表示第 k k k 个费马数,这里 k k k 为非负整数,那么对于所有正整数 n n n ,我们有 F 0 F 1 F 2 . . . F n − 1 = F n − 2 F_0F_1F_2...F_{n-1}=F_n-2 F0F1F2...Fn1=Fn2

定理

3.1 每一个大于1的正整数都有一个素因子,且存在无穷多个素数
3.2 如果n是一个合数,那么n一定有一个不超过 n \sqrt{n} n 的素因子

基于这条定理寻找素数的方法被称为埃拉托色尼斯筛法

3.3 狄利克雷关于等差数列中素数的定理

假设 a , b a,b a,b是互素的正整数,那么等差数列 a n + b ( n = 1 , 2 , 3 , . . . ) an+b (n=1,2,3,...) an+bn=1,2,3,...包含了无穷多的素数

3.4 素数定理

随着 x x x 的无限增长, π ( x ) \pi(x) π(x) x / l o g x x/logx x/logx的比趋于1,这里, l o g x logx logx x x x 的自然对数,如果用极限的语言来表述,我们有
lim ⁡ x → ∞ π ( x ) / ( x / l o g x ) = 1 \lim_{x \rightarrow \infty} \pi(x) / (x/logx) = 1 xlimπ(x)/(x/logx)=1

通常我们用 π ( x ) ∼ x / l o g x \pi(x) \sim x/logx π(x)x/logx , 称 π ( x ) \pi(x) π(x) 渐近于 x / l o g x x/logx x/logx

3.4.1 令 p n p_n pn是第n个素数,其中n是正整数,那么 p n ∼ n l o g n p_n \sim n logn pnnlogn, 即第n个素数渐近于 l o g n logn logn
3.5 对于任意的正整数n,存在至少n个连续的正合数
3.6 a,b是整数,且(a,b)=d,那么(a/d,b/d)=1

也就是说 a/d与b/d互素

3.6.1 如果 a,b为整数,且 b ≠ 0 b\neq0 b=0,则a/b=p/q,其中pq为整数,且 ( p , q ) = 1 , q ≠ 0 (p,q)=1,q\neq0 (p,q)=1,q=0
3.7 令 a,b,c是整数,那么 (a+cb,b)=(a,b)
3.8 两个不全为零的整数 a,b的最大公因子是 a,b的线性组合中最小的正整数
3.8.1 (Bezout定理)如果 a与b均为整数,则有整数m和n使得 m a + n b = ( a , b ) ma+nb=(a,b) ma+nb=(a,b)
3.8.2 整数a与b互素当且仅当存在整数m和n使得 ma+nb=1
3.9 如果 a,b是正整数,那么所有a,b的线性组合构成的集合与所有(a,b)的倍数构成的集合相同
3.10 如果a,b是不全为零的整数,那么正整数d是a,b的最大公因子当且仅当
  • d|a且d|b
  • 如果c是整数且 c|a,c|b那么c|d
3.11 欧几里得算法

令整数 r 0 = a , r 1 = b r_0=a,r_1=b r0=a,r1=b 满足 a ≥ b > 0 a \geq b>0 ab>0,如果连续做带余除法得到 r j = r j + 1 q j + 1 + r j + 2 r_j=r_{j+1}q_{j+1}+r_{j+2} rj=rj+1qj+1+rj+2,且 0 < r j + 2 < r j + 1 ( j = 0 , 1 , 2 , . . . , n − 2 ) , r n + 1 = 0 0<r_{j+2}<r_{j+1} (j=0,1,2,...,n-2),r_{n+1}=0 0<rj+2<rj+1(j=0,1,2,...,n2),rn+1=0,那么 ( a , b ) = r n (a,b)=r_n (a,b)=rn,它是最后一个非零余数

3.12 令 f n + 1 f_{n+1} fn+1 f n + 2 ( n > 1 ) f_{n+2} (n>1) fn+2(n>1) 是斐波那契序列中连续两项,那么用欧几里得算法证明 ( f n + 1 , f n + 2 ) = 1 (f_{n+1},f_{n+2})=1 (fn+1,fn+2)=1一共需要n步除法
3.13 拉梅定理

用欧几里得算法计算两个正整数的最大公因子时,所需的除法次数不会超过两个整数中较小的那个十进制数的位数的5倍

3.13.1 求两个正整数a,b a>b 的最大公因子需要 O ( ( l o g 2 a ) 3 ) O((log_2a)^3) O((log2a)3)次位运算
3.14 令 a,b是正整数,那么 ( a , b ) = s n a + t n b (a,b)=s_na+t_nb (a,b)=sna+tnb,其中 s n , t n s_n,t_n sn,tn是下面定义的递归序列的第n项:

s 0 = 1 , t 0 = 0 , s_0=1,t_0=0, s0=1,t0=0,

s 1 = 0 , t 1 = 1 , s_1=0,t_1=1, s1=0,t1=1,


s j = s j − 2 − q j − 1 s j − 1 , t j = t j − 2 − q j − 1 t j − 1 s_j=s_{j-2}-q_{j-1}s_{j-1} , t_j=t_{j-2}-q_{j-1}t_{j-1} sj=sj2qj1sj1,tj=tj2qj1tj1

其中 j = 2 , 3 , . . . , n j=2,3,...,n j=2,3,...,n q j q_j qj 是欧几里得算法求 ( a , b ) (a,b) (a,b) 每一步的商

3.15 算术基本定理

每个大于1 的正整数都可以被唯一的写成素数的乘积,在乘积中的素因子按照非降序排列

3.16 如果 a a a b b b 是正整数,则 [ a , b ] = a b / ( a , b ) [a,b]=ab/(a,b) [a,b]=ab/(a,b), 其中 [ a , b ] [a,b] [a,b] 代表 a , b a,b a,b 的最小公倍数 ( a , b ) (a,b) (a,b) 代表 a , b a,b a,b 的最大公约数
3.17 存在无穷多个形如 4 n + 3 4n+3 4n+3 的素数, 其中 n n n 为正整数
3.18 设 α \alpha α 为多项式 x n + c n − 1 x n − 1 + . . . + c 1 x + c 0 x^n+c_{n-1}x^{n-1} + ... + c_1x+c_0 xn+cn1xn1+...+c1x+c0 的根,其中系数 c 0 , c 1 , . . . , c n − 1 c_0,c_1,...,c_{n-1} c0,c1,...,cn1 为整数或者无理数
3.19 如果 s s s 是实数且 s > 1 s>1 s>1,则 ζ ( s ) = ∑ n = 1 ∞ 1 n s = ∏ p 为素数 ∞ ( 1 − 1 p s ) − 1 \zeta(s)=\sum^\infty_{n=1}\frac{1}{n^s}=\prod^\infty_{p为素数}(1-\frac{1}{p^s})^{-1} ζ(s)=n=1ns1=p为素数(1ps1)1
3.20 整数 F N = 2 2 n + 1 F_N=2^{2^n}+1 FN=22n+1 被称为费马数,费马数的每个素因子都形如 2 n + 2 k + 1 2^{n+2}k+1 2n+2k+1
3.21 设 m m m n n n 为互异的非负整数,则费马数 F m F_m Fm F n F_n Fn 是互素的
3.22 一个正规 n n n 边形可用直尺(无刻度)和圆规画出当且仅当 n n n 是一个2的非负幂次与非负个不同费马素数的乘积
3.23 设 a , b a,b a,b 是整数且 d = ( a , b ) d=(a,b) d=(a,b) 如果 d ∤ c d \nmid c dc,那么方程 a x + b y = c ax+by=c ax+by=c 没有整数解, 如果 $ d | c$ 那么存在无穷多个整数解。 另外 如果 x = x 0 , y = y 0 x=x_0,y=y_0 x=x0,y=y0 是方程的一个特解,那么所有的解可以表示为 x = x 0 + ( b / d ) n , y = y 0 − ( a / d ) n x=x_0+(b/d)n, \qquad y=y_0 - (a/d)n x=x0+(b/d)n,y=y0(a/d)n其中 n n n 为整数
3.24 如果 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an 是非零整数,那么方程 a 1 x 1 + a 2 x 2 + . . . + a n x n = c a_1x_1+a_2x_2+...+a_nx_n=c a1x1+a2x2+...+anxn=c 有整数解当且仅当 d = ( a 1 , a 2 , . . . , a n ) d=(a_1,a_2,...,a_n) d=(a1,a2,...,an) 整除 c c c. 另外当存在一个解的时候,方程有无穷多个解

猜想与科普

黎曼猜想

黎曼zeta函数的非平凡零点的实数部分均为1/2

Skewes常数

根据素数定理可以知道素数的个数大致可以用 π ( x ) \pi(x) π(x) 来表示,但是真实的素数个数 L i ( x ) Li(x) Li(x) π ( x ) \pi(x) π(x) 之间的差值的正负号是怎样的呢?
根据定理有证明 L i ( x ) − π ( x ) Li(x)- \pi(x) Li(x)π(x)会无穷多次改变正负号,而有另一个证明得到至少有一个 x < 1 0 1 0 1 0 34 x < 10^{10^{10^{34}}} x<10101034使得 L i ( x ) − π ( x ) Li(x)- \pi(x) Li(x)π(x) 改变了正负号。而 这个 1 0 1 0 1 0 34 10^{10^{10^{34}}} 10101034 就被称为 Skewes常数

伯特兰猜想(公设)

对于任意给定的正整数n(n>1),存在一个素数p,使得 n<p<2n
该猜想于1852年由切比雪夫给出证明。现今通常称为 伯特兰公设

孪生素数猜想

存在无穷多的形如 p和p+2的素数对
该猜想于1966年,中国数学家陈景润证明了有无穷多个p是素数的情况下,p+2有之多2个素因子

素数等差数列的厄尔多斯猜想

对任意的正整数 n ≥ 3 n\geq3 n3,有一个由素数组成的长度为n的等差数列
该猜想于2006年Ben Green 和 陶哲轩完成证明特例,产生的定理叫 Green-Tao定理

哥德巴赫猜想

每个大于2的正偶数可以写成两个素数之和
陈景润给出了
证明每个足够大的偶数可以写成一个素数和一个至多由两个素数的乘积得到的数的和

n 2 + 1 n^2+1 n2+1猜想

存在无穷多个形如 n 2 + 1 n^2+1 n2+1的素数,其中n是正整数

勒让德猜想

每两个连续的整数的平方之间必有一个素数

兰道问题

由四个猜想组成,分别为上述提到的

  • 孪生素数猜想
  • 哥德巴赫猜想
  • n 2 + 1 n^2+1 n2+1猜想
  • 勒让德猜想

这四个问题至今仍未被证明

n阶费瑞级数

n阶费瑞级数是一个按照递升次序排列的分数 h / k h/k h/k 的集合,其中 h h h k k k 是整数, 0 ≤ h ≤ k ≤ n 0 \leq h \leq k \leq n 0hkn ( h , k ) = 1 (h,k)=1 (h,k)=1,我们分别将0,1表示为形式 0/1, 1/1 例如4阶费瑞级数为
0 1 , 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , 1 1 \frac{0}{1},\frac{1}{4},\frac{1}{3},\frac{1}{2},\frac{2}{3},\frac{3}{4},\frac{1}{1} 10,41,31,21,32,43,11
n阶费瑞级数有一个很神奇的性质,任意一个位置的 p / q p/q p/q 的左右两个位置的分子相加除以分母相加就是约分之后就是这个 p / q p/q p/q
比如 1 4 = 0 + 1 1 + 3 \frac{1}{4} = \frac{0+1}{1+3} 41=1+30+1 2 3 = 1 + 3 2 + 4 \frac{2}{3} = \frac{1+3}{2+4} 32=2+41+3

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值