数论总结_中

四、同余

定义

m m m 是正整数,若 a a a b b b 是整数,且 m ∣ ( a − b ) m|(a-b) m(ab),则称 a a a b b b m m m同余,记 a ≡ b ( m o d   m ) a\equiv b(mod \ m) ab(mod m)

完全剩余系

一个模的完全剩余系是一个整数的集合,使得每个整数恰和此集合中的一个元素模 m m m 同余

一元线性同余方程

x x x 为未知整数,形如 a x ≡ b ( m o d   m ) ax \equiv b(mod \ m) axb(mod m)
的同余式称为一元线性同余方程

模的逆

给定整数 a a a 且满足 ( a , m ) = 1 (a,m)=1 (a,m)=1,称 a x ≡ 1 ( m o d   m ) ax \equiv 1 (mod \ m) ax1(mod m)的一个解为 a a a m m m 的逆

导数

f ( x ) = a n x n + a n − 1 x n − 1 + . . . + a 1 x + a 0 f(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0 f(x)=anxn+an1xn1+...+a1x+a0, 其中 a i a_i ai 时候实数, i = 0 , 1 , 2 , . . . , n i=0,1,2,...,n i=0,1,2,...,n. f ( x ) f(x) f(x) 的导数等于 n a n x n − 1 + ( n − 1 ) a n − 1 x n − 2 + . . . + a 1 na_nx^{n-1}+(n-1)a_{n-1}x^{n-2}+...+a_1 nanxn1+(n1)an1xn2+...+a1,记为 f ′ ( x ) f'(x) f(x)

矩阵同余

A \pmb{A} A B \pmb{B} B n × k n \times k n×k 阶整数矩阵,第 ( i , j ) (i,j) (i,j) 个元素分别是 a i j a_{ij} aij b i j b_{ij} bij,若 a i j ≡ b i j ( m o d   m ) a_{ij} \equiv b_{ij} (mod \ m) aijbij(mod m) 对所有 ( i , j ) (i,j) (i,j) 成立, 1 ≤ i ≤ n , 1 ≤ j ≤ k 1 \leq i \leq n, 1 \leq j \leq k 1in,1jk,则称 A \pmb{A} A B \pmb{B} B m m m 同余,若 A \pmb{A} A B \pmb{B} B m m m 同余,则记 A ≡ B ( m o d   m ) \pmb{A} \equiv \pmb{B}(mod \ m) AB(mod m)

矩阵的模的逆

A \pmb{A} A A ‾ \overline{\pmb{A}} A n × n n \times n n×n 阶矩阵, 且 A ‾ A ≡ A A ‾ ≡ I ( m o d   m ) \overline{\pmb{A}}\pmb{A} \equiv \pmb{A}\overline{\pmb{A}} \equiv \pmb{I} (mod \ m) AAAAI(mod m),其中 I = [ 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 1 ] (5) \pmb{I}=\begin{bmatrix} {1}&{0}&{\cdots}&{0}\\ {0}&{1}&{\cdots}&{0}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {0}&{0}&{\cdots}&{1}\\ \end{bmatrix} \tag{5} I= 100010001 (5) n n n 阶单位矩阵,则 A ‾ \overline{\pmb{A}} A 称为 A \pmb{A} A m m m 的一个逆

矩阵的伴随

n × n n \times n n×n 阶矩阵 A \pmb{A} A 的伴随是一个 n × n n \times n n×n 阶矩阵,它的第 ( i , j ) (i,j) (i,j) 个元素 C i j C_{ij} Cij,其中 C i j C_{ij} Cij ( − 1 ) i + j (-1)^{i+j} (1)i+j 乘以 A \pmb{A} A 删去第 i i i 行第 j j j列所得矩阵的行列式。矩阵 A \pmb{A} A 的伴随记为 a d j ( A ) adj(\pmb{A}) adj(A),或简记为 a d j   A adj \ \pmb{A} adj A

引理

4.1 m m m 个模m不同余的整数的集合构成一个模m的完全剩余系
4.2 若 a , b a,b a,b 是正整数,则 a a − 1 a^a-1 aa1 2 b − 1 2^b-1 2b1 的最小正余数是 2 r − 1 2^r-1 2r1,其中 r r r a a a b b b 的最小正余数
4.3 若 a , b a,b a,b 是正整数,则 2 a − 1 2^a-1 2a1 2 b − 1 2^b-1 2b1 的最大公因子是 2 ( a , b ) − 1 2^{(a,b)}-1 2(a,b)1
4.4 若 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 是多项式,则 ( f + g ) ′ ( x ) = f ′ ( x ) + g ′ ( x ) , ( c f ) ′ ( x ) = c ( f ′ ( x ) ) (f+g)'(x)=f'(x)+g'(x), (cf)'(x)=c(f'(x)) (f+g)(x)=f(x)+g(x),(cf)(x)=c(f(x)),其中 c c c 为常数,而且,若 k k k 是正整数,则 ( f + g ) ( k ) = f ( k ) ( x ) + g ( k ) ( x ) , ( c f ) ( k ) ( x ) = c ( f ( k ) ( x ) ) (f+g)^{(k)}=f^{(k)}(x)+g^{(k)}(x),(cf)^{(k)}(x)=c(f^{(k)}(x)) (f+g)(k)=f(k)(x)+g(k)(x),(cf)(k)(x)=c(f(k)(x)),其中 c c c 为常数
4.5 若 m m m k k k 是正整数,且 f ( x ) = x m f(x)=x^m f(x)=xm, 则 f ( k ) ( x ) = m ( m − 1 ) . . . ( m − k + 1 ) x m − k f^{(k)}(x)=m(m-1)...(m-k+1)x^{m-k} f(k)(x)=m(m1)...(mk+1)xmk
4.6 泰勒展开式

f ( x ) f(x) f(x) n n n 次多项式, a a a b b b 是实数,则
f ( a + b ) = f ( a ) + f ′ ( a ) b + f ′ ′ ( a ) b 2 / 2 ! + . . . + f ( n ) ( a ) b n / n ! f(a+b)=f(a)+f'(a)b+f''(a)b^2/2!+...+f^{(n)}(a)b^n/n! f(a+b)=f(a)+f(a)b+f′′(a)b2/2!+...+f(n)(a)bn/n!
其中,对于每一个给定的 a a a 的值,系数(即 1 , f ′ ( a ) , f ′ ′ ( a ) / 2 ! , . . . , f ( n ) ( a ) / n ! 1, f'(a),f''(a)/2!,...,f^{(n)}(a)/n! 1,f(a),f′′(a)/2!,...,f(n)(a)/n!)是关于 a a a 的整系数多项式

定理

4.1 若 a a a b b b 是整数,则 a ≡ b ( m o d   m ) a\equiv b(mod \ m) ab(mod m) 当且仅当存在整数 k k k ,使得 a = b + k m a=b+km a=b+km
4.2 设 m m m 是正整数,模 m m m 的同余满足下面的性质:
  • 自反性
    a a a 是整数,则 a ≡ a ( m o d   m ) a\equiv a(mod \ m) aa(mod m)
  • 对称性
    a a a b b b 是整数,且 a ≡ b ( m o d   m ) a\equiv b(mod \ m) ab(mod m) ,则 b ≡ a ( m o d   m ) b\equiv a(mod \ m) ba(mod m)
  • 传递性
    a , b , c a,b,c a,b,c 是整数,且 a ≡ b ( m o d   m ) a\equiv b(mod \ m) ab(mod m) b ≡ c ( m o d   m ) b\equiv c(mod \ m) bc(mod m),则 a ≡ c ( m o d   m ) a\equiv c(mod \ m) ac(mod m)
4.3 如 a a a b b b 为整数, m m m 为正整数,则 a ≡ b ( m o d   m ) a\equiv b(mod \ m) ab(mod m) 当且仅当 a   m o d   m = b   m o d   m a \ mod \ m = b \ mod \ m a mod m=b mod m
4.4 若 a , b , c a,b,c a,b,c m m m 是整数, m > 0 m>0 m>0,且 a ≡ b ( m o d   m ) a\equiv b(mod \ m ) ab(mod m),则
  • $a+c \equiv b+c (mod \ m) $
  • $a-c \equiv b-c (mod \ m) $
  • $ac \equiv bc (mod \ m) $
4.5 若 a , b , c , m a,b,c,m a,b,c,m 是整数。 m > 0 , d = ( c , m ) m>0,d=(c,m) m>0,d=(c,m),且有 a c ≡ b c ( m o d   m ) ac \equiv bc(mod \ m) acbc(mod m),则 a ≡ b ( m o d   m / d ) a\equiv b(mod \ m/d) ab(mod m/d)
4.5.1 若 a , b , c , m a,b,c,m a,b,c,m 是整数, m > 0 , ( c , m ) = 1 m>0,(c,m)=1 m>0,(c,m)=1,且有 a c ≡ b c ( m o d   m ) ac \equiv bc(mod \ m) acbc(mod m),则 a ≡ b ( m o d   m ) a \equiv b (mod \ m) ab(mod m)
4.6 若 a , b , c , d , m a,b,c,d,m a,b,c,d,m 是整数, m > 0 , a ≡ b ( m o d   m ) m>0, a \equiv b(mod \ m) m>0,ab(mod m), 且 c ≡ d ( m o d   m ) c \equiv d(mod \ m) cd(mod m),则
  • a + c ≡ b + d ( m o d   m ) a+c \equiv b+d (mod \ m) a+cb+d(mod m)
  • a − c ≡ b − d ( m o d   m ) a-c \equiv b-d (mod \ m) acbd(mod m)
  • a c ≡ b d ( m o d   m ) ac \equiv bd (mod \ m) acbd(mod m)
4.7 若 $r_1,r_2,…,r_m $是一个模 m m m 的完全剩余系,且正整数 a a a 满足 ( a , m ) = 1 (a,m)=1 (a,m)=1,则对任何整数 b b b a r 1 + b , a r 2 + b , . . . , a r m + b ar_1+b,ar_2+b,...,ar_m+b ar1+b,ar2+b,...,arm+b 都是模 m m m 的完全剩余系
4.8 若 a , b , k , m a,b,k,m a,b,k,m是整数, k > 0 , m > 0 k>0,m>0 k>0,m>0 a ≡ b ( m o d   m ) a \equiv b(mod \ m) ab(mod m),则 a k ≡ b k ( m o d   m ) a^k \equiv b^k(mod \ m) akbk(mod m)
4.9 若 a ≡ b ( m o d   m 1 ) ,   a ≡ b ( m o d   m 2 ) , . . . ,   a ≡ b ( m o d   m k ) a \equiv b(mod \ m_1), \ a \equiv b (mod \ m_2 ),..., \ a \equiv b (mod \ m_k ) ab(mod m1), ab(mod m2),..., ab(mod mk), 其中 a , b , m 1 , m 2 , . . . , m k a,b,m_1,m_2,...,m_k a,b,m1,m2,...,mk 是整数,且 m 1 , m 2 , . . . , m k m_1,m_2,...,m_k m1,m2,...,mk是正数,则 a ≡ b ( m o d   [ m 1 , m 2 , m 3 , . . . , m k ] ) a \equiv b(mod \ [m_1,m_2,m_3,...,m_k]) ab(mod [m1,m2,m3,...,mk]) 其中 [ m 1 , m 2 , m 3 , . . . , m k ] [m_1,m_2,m_3,...,m_k] [m1,m2,m3,...,mk] m 1 , m 2 , m 3 , . . . , m k m_1,m_2,m_3,...,m_k m1,m2,m3,...,mk 的最小公倍数
4.9.1 若 a ≡ b ( m o d   m 1 ) ,   a ≡ b ( m o d   m 2 ) , . . . ,   a ≡ b ( m o d   m k ) a \equiv b(mod \ m_1), \ a \equiv b (mod \ m_2 ),..., \ a \equiv b (mod \ m_k ) ab(mod m1), ab(mod m2),..., ab(mod mk),其中 a , b a,b a,b 是整数, m 1 , m 2 , . . . , m k m_1,m_2,...,m_k m1,m2,...,mk 是两两互素的正整数,则 a ≡ b ( m o d   m 1 m 2 . . . m k ) a \equiv b(mod \ m_1m_2...m_k) ab(mod m1m2...mk)
4.10 设 b , m , N b,m,N b,m,N 是正整数,且 b < m b<m b<m,则计算 b N b^N bN 模 m 的最小正剩余要用 O ( ( l o g 2 m ) 2 l o g 2 N ) O((log_2m)^2log_2N) O((log2m)2log2N) 次位运算
4.11 设 a , b , m a,b,m a,b,m 是整数, m > 0 , ( a , m ) = d m>0,(a,m)=d m>0,(a,m)=d d ∤ b d \nmid b db ,则 a x ≡ b ( m o d   m ) ax \equiv b(mod \ m) axb(mod m) 无解,若 d ∣ b d|b db,则 a x ≡ b ( m o d   m ) ax \equiv b(mod \ m) axb(mod m) 恰有 d d d 个模m不同余的解
4.11.1 若 a a a m > 0 m>0 m>0 互素,且 b b b 是整数,则线性同余方程 a x ≡ b ( m o d   m ) ax \equiv b(mod \ m) axb(mod m) 有模 m m m 的唯一解
4.12 设 p p p 是素数,正整数 a a a 是其自身模 p p p 的逆当且仅当 a ≡ 1 ( m o d   p ) a\equiv 1(mod \ p) a1(mod p) a ≡ − 1 ( m o d   p ) a\equiv -1(mod \ p) a1(mod p)
4.13 中国剩余定理

m 1 , m 2 , . . , m r m_1,m_2,..,m_r m1,m2,..,mr是两两互素的正整数,则同余方程组
x ≡ a 1 ( m o d   m 1 ) x \equiv a_1(mod \ m_1) xa1(mod m1)

x ≡ a 2 ( m o d   m 2 ) x \equiv a_2(mod \ m_2) xa2(mod m2)

. . . ... ...

x ≡ a r ( m o d   m r ) x \equiv a_r(mod \ m_r) xar(mod mr)
有模 M = m 1 m 2 . . . m r M=m_1m_2...m_r M=m1m2...mr 的唯一解

4.14 正整数 2 a − 1 2^a-1 2a1 2 b − 1 2^b-1 2b1 是互素的当且仅当 a a a b b b 是互素的
4.15 亨泽尔引理

f ( x ) f(x) f(x) 是整系数多项式, k ≥ 2 k \geq 2 k2 是整数, p p p 是素数,进一步假设 r r r 是同余方程 f ( x ) ≡ 0 ( m o d   p k − 1 ) f(x) \equiv 0 (mod \ p^{k-1}) f(x)0(mod pk1) 的解,则

  • f ′ ( r ) ≢ 0 ( m o d   p ) f'(r) \not\equiv 0(mod \ p) f(r)0(mod p),则存在唯一整数 t t t 0 ≤ t ≤ p 0 \leq t \leq p 0tp,使得 f ( r + t p k − 1 ) ≡ 0 ( m o d   p k ) f(r+tp^{k-1}) \equiv 0(mod \ p^k) f(r+tpk1)0(mod pk) t t t
    t ≡ − f ′ ( r ) ‾ ( f ( r ) / p k − 1 ) ( m o d   p ) t \equiv -\overline{f'(r)}(f(r)/p^{k-1})(mod \ p) tf(r)(f(r)/pk1)(mod p)
    给出,其中 f ′ ( r ) ‾ \overline{f'(r)} f(r) f ′ ( r ) f'(r) f(r) 的逆

  • f ′ ( r ) ≡ 0 ( m o d   p ) , f ( r ) ≡ 0 ( m o d   p k ) f'(r) \equiv 0 (mod \ p), f(r) \equiv 0 (mod \ p^k) f(r)0(mod p),f(r)0(mod pk),则对所有整数 t t t 都有 f ( r + t p k − 1 ) ≡ 0 ( m o d   p k ) f(r+tp^{k-1}) \equiv 0 (mod \ p^k) f(r+tpk1)0(mod pk)

  • f ′ ( r ) ≡ 0 ( m o d   p ) , f ( r ) ≢ 0 ( m o d   p k ) f'(r) \equiv 0 (mod \ p), f(r) \not\equiv 0 (mod \ p^k) f(r)0(mod p),f(r)0(mod pk),则 f ( x ) ≡ 0 ( m o d   p k ) f(x) \equiv 0 (mod \ p^k) f(x)0(mod pk) 不存在解使得 x ≡ r ( m o d   p k − 1 ) x \equiv r (mod \ p^{k-1}) xr(mod pk1)

4.15.1 假设 r r r 是多项式同余方程 f ( x ) ≡ 0 ( m o d   p ) f(x) \equiv 0 (mod \ p) f(x)0(mod p)的一个解,其中 p p p 是素数,若 f ′ ( r ) ≢ 0 ( m o d   p ) f'(r) \not\equiv 0(mod \ p) f(r)0(mod p),则存在模 p k p^k pk 的唯一解 r k , k = 2 , 3 , . . . r_k, k=2,3,... rk,k=2,3,...,使得 r 1 = r r_1=r r1=r r k = r k − 1 − f ( r k − 1 ) f ′ ( r ) ‾ r_k=r_{k-1}-f(r_{k-1})\overline{f'(r)} rk=rk1f(rk1)f(r),其中 f ′ ( r ) ‾ \overline{f'(r)} f(r) f ′ ( r ) f'(r) f(r) p p p 的一个逆
4.16 设 a , b , v , d , e , f , m a,b,v,d,e,f,m a,b,v,d,e,f,m是整数, m > 0 m>0 m>0,且 ( Δ , m ) = 1 (\Delta,m)=1 (Δ,m)=1, 其中 Δ = a d − b c \Delta=ad-bc Δ=adbc, 则同余方程组 a x + b y ≡ e ( m o d   m ) ax+by \equiv e (mod \ m) ax+bye(mod m) c x + d y ≡ f ( m o d   m ) cx+dy \equiv f (mod \ m) cx+dyf(mod m) 有模 m m m 的唯一解如下: x ≡ Δ ‾ ( d e − b f ) ( m o d   m ) x\equiv \overline{\Delta}(de-bf)(mod \ m) xΔ(debf)(mod m) y ≡ Δ ‾ ( a f − c e ) ( m o d   m ) y\equiv \overline{\Delta}(af-ce)(mod \ m) yΔ(afce)(mod m) 其中 Δ ‾ \overline{\Delta} Δ Δ \Delta Δ m m m 的一个逆
4.17 A \pmb{A} A B \pmb{B} B n × k n \times k n×k 阶整数矩阵,满足 A ≡ B ( m o d   m ) \pmb{A} \equiv \pmb{B}(mod \ m) AB(mod m) C \pmb{C} C k × p k \times p k×p 阶整数矩阵, D \pmb{D} D p × n p \times n p×n 阶整数矩阵,则 A C ≡ B C ( m o d   m ) , D A ≡ D B ( m o d   m ) \pmb{AC} \equiv \pmb{BC} (mod \ m), \pmb{DA} \equiv \pmb{DB} (mod \ m) ACBC(mod m),DADB(mod m)
4.18 设 A = [ a b c d ] (2) \pmb{A}=\begin{bmatrix}a & b\\ c & d\end{bmatrix} \tag{2} A=[acbd](2)是整数矩阵,且 Δ = d e t   A = a d − b c \Delta=det \ \pmb{A}=ad-bc Δ=det A=adbc 与正整数 m m m 互素,则矩阵 A ‾ = Δ ‾ [ d − b − c a ] (2) \overline{\pmb{A}}=\overline{\Delta}\begin{bmatrix}d & -b\\-c & a\end{bmatrix} \tag{2} A=Δ[dcba](2)其中 Δ ‾ \overline{\Delta} Δ Δ \Delta Δ m m m 的逆
4.19 若 A \pmb{A} A n × n n \times n n×n 阶矩阵,且 d e t   A ≠ 0 det \ \pmb{A} \neq 0 det A=0,则 A ( a d j   A ) = ( d e t A ) I \pmb{A} (adj \ \pmb{A}) = (det \pmb{A})\pmb{I} A(adj A)=(detA)I。 注意, d e t A det \pmb{A} detA 代表矩阵 A \pmb{A} A 的行列式
4.20 若 A \pmb{A} A n × n n \times n n×n阶整数矩阵, m m m 是正整数,使得 ( d e t   A , m ) = 1 (det \ \pmb{A},m)=1 (det A,m)=1,则矩阵 A ‾ = Δ ‾ ( a d j   A ) \overline{\pmb{A}}=\overline{\Delta}(adj \ \pmb{A}) A=Δ(adj A) A \pmb{A} A m m m 的一个逆,其中 Δ ‾ \overline{\Delta} Δ Δ = d e t   A \Delta = det \ \pmb{A} Δ=det A m m m 的一个逆

五、同余的应用

定理

5.1 若 d ∣ b d | b db,并且 j , k j,k j,k 都是正整数,满足 j < k j<k j<k,那么 ( a k . . . a 1 a 0 ) b (a_k...a_1a_0)_b (ak...a1a0)b 可被 d j d^j dj 整除当且仅当 ( a k . . . a 1 a 0 ) b (a_k...a_1a_0)_b (ak...a1a0)b 可以被 d j d^j dj 整除
5.2 若 d ∣ ( b − 1 ) d|(b-1) d(b1),那么 n = ( a k . . . a 1 a 0 ) b n=(a_k...a_1a_0)_b n=(ak...a1a0)b 可被 d d d 整除当且仅当 n n n 的各位数字之和 a k + a k − 1 + . . . + a 1 + a 0 a_k+a_{k-1}+...+a_1+a_0 ak+ak1+...+a1+a0 可以被 d d d 整除
5.3 若 d ∣ ( b + 1 ) d|(b+1) d(b+1),那么 n = ( a k . . . a 1 a 0 ) b n=(a_k...a_1a_0)_b n=(ak...a1a0)b 可被 d d d 整除当且仅当 n n n 的各位数字的交错和 ( − 1 ) k a k + a k − 1 + . . . − a 1 + a 0 (-1)^ka_k+a_{k-1}+...-a_1+a_0 (1)kak+ak1+...a1+a0 可以被 d d d 整除

六、特殊的同余式

定义

伪素数

b b b 是一个正整数,若 n n n 是一个正合数且 b n ≡ b ( m o d   n ) b^n \equiv b(mod \ n) bnb(mod n),则称 n n n b b b 为基的伪素数

卡迈尔数(绝对伪素数)

一个合数 n n n 若对所有满足 ( b , n ) = 1 (b,n)=1 (b,n)=1 的正整数 b b b 都有 b n − 1 ≡ 1 ( m o d   n ) b^{n-1} \equiv 1(mod \ n) bn11(mod n)成立,则称为卡迈尔数或者绝对伪素数

米勒检验

n n n 是一个正整数,满足 n > 2 n>2 n>2 n − 1 = 2 s t n-1=2^st n1=2st,其中 s s s 是一个非负整数, t t t 是一个奇正整数。
如果有 b t ≡ 1 ( m o d   n ) b^t \equiv 1 (mod \ n) bt1(mod n) 或者 b 2 j ⋅ t ≡ − 1 ( m o d   n ) b^{2^j \cdot t} \equiv -1(mod \ n) b2jt1(mod n) 对于某个 j j j 成立,其中 1 ≤ j ≤ s − 1 1 \leq j \leq s-1 1js1,则称 n n n 通过 以b为基的米勒检验

注意:通过素数必定通过米勒检验,但是通过米勒检验并不一定是素数,例如 2047即可通过以2为基的米勒检验,但是 2047=23 * 89

强伪素数

n n n 是一个合数,且通过以 b b b 为基的米勒检验,那么称 n n n 为以 b b b 为基的强伪素数

欧拉函数

n n n 是一个正整数,欧拉函数 ϕ ( n ) \phi(n) ϕ(n) 定义为不超过 n n n 且与 n n n 互素的正整数的个数

模n的既约剩余系

ϕ ( n ) \phi(n) ϕ(n) 个整数构成的集合,集合中的每个元素均与 n n n 互素,且任何两个元素模 n n n 不同余

引理

6.1 若 d d d n n n 均是正整数且 d d d 整除 n n n,那么 2 d − 1 2^d-1 2d1 整除 2 n − 1 2^n-1 2n1

定理

6.1 威尔逊定理

p p p 是素数,则 ( p − 1 ) ! ≡ − 1 ( m o d   p ) (p-1)! \equiv -1 (mod \ p) (p1)!1(mod p)

6.2 威尔逊定理逆命题

n n n 是正整数且 n ≥ 2 n \geq 2 n2,若 ( n − 1 ) ! ≡ − 1 ( m o d   n ) (n-1)! \equiv -1 (mod \ n) (n1)!1(mod n),则 n n n 是素数

6.3 费马小定理

p p p 是一个素数, a a a 是一个正整数且 p ∤ a p \nmid a pa,则 a p − 1 ≡ 1 ( m o d   p ) a^{p-1} \equiv 1 (mod \ p) ap11(mod p)

6.4 设 p p p 是素数且 a a a 是一个正整数,则 a p ≡ a ( m o d   p ) a^p \equiv a(mod \ p) apa(mod p)
6.5 若 p p p 是素数且 a a a 是一个正整数且 p ∤ a p \nmid a pa,那么 a p − 2 a^{p-2} ap2 a a a p p p 的逆
6.5.1 若 a a a b b b 是正整数, p p p 是素数且 p ∤ a p \nmid a pa,那么线性同余方程 a x ≡ b ( m o d   p ) ax \equiv b(mod \ p) axb(mod p) 的解满足 x ≡ a p − 2 b ( m o d   p ) x \equiv a^{p-2}b(mod \ p) xap2b(mod p) 的整数 x x x
6.6 以2为基的伪素数有无穷多个
6.7 若 n = q 1 q 2 . . . q k n=q_1q_2...q_k n=q1q2...qk,其中 q j q_j qj 是不同的素数满足 ( q j − 1 ) ∣ ( n − 1 ) (q_j-1) | (n-1) (qj1)(n1) 对所有 j j j 成立且 k > 2 k>2 k>2,那么 n n n 是一个卡迈克尔数
6.8 若 n n n 是素数且 b b b 是正整数满足 n ∤ b n \nmid b nb, 那么 n n n 能通过以 b b b 为基的米勒检验
6.9 有无穷多个以2为基的强伪素数
6.10 若 n n n 是一个奇正合数,那么最多有 ( n − 1 ) / 4 (n-1)/4 (n1)/4 b b b ,其中 1 ≤ b ≤ n − 1 1 \leq b \leq n-1 1bn1,使得 n n n 能够通过以 b b b 为基的米勒检验

简单通过该定理去验证一个数为素数比试除法还要麻烦,但是从中有一个思路。在小于n的正整数里面随机选取b进行计算,n通过检验且n为合数的概率要小于1/4。
这样我们连续选择多个b进行计算则n为合数的概率指数级下降

6.11 拉宾概率素性检验

n n n 是一个正整数,去 k k k 个不同的小于 n n n 的正整数为基,并且对 n n n 做每一个基的米勒检验,若 n n n 是一个合数,则 n n n 通过所有 k k k 个检验的概率不超过 ( 1 / 4 ) k (1/4)^k (1/4)k

6.12 若广义黎曼猜想是正确的,那么存在一个算法来判断一个正整数 n n n 是否是素数,并且该算法的位运算量时 O ( ( l o g 2 n ) 5 ) O((log_2n)^5) O((log2n)5)
6.13 设 r 1 , r 2 , . . . , r ϕ ( n ) r_1,r_2,...,r_{\phi(n)} r1,r2,...,rϕ(n) 是模 n n n 的一个既约剩余系,若 a a a 是一个正整数且 ( a , n ) = 1 (a,n)=1 (a,n)=1,那么集合 a r 1 , a r 2 , . . . , a r ϕ ( n ) ar_1,ar_2,...,ar_{\phi(n)} ar1,ar2,...,arϕ(n) 也是一个模 n n n 的既约剩余系
6.14 欧拉定理(费马小定理的推广)

m m m 是一个正整数, a a a 是一个整数且 ( a , m ) = 1 (a,m)=1 (a,m)=1,那么 a ϕ ( m ) ≡ 1 ( m o d   m ) a^{\phi(m)} \equiv 1(mod \ m) aϕ(m)1(mod m)

猜想

6.1 广义黎曼猜想的推论

对任意一个正合数 n n n,存在一个基 b b b,且 b < 2 ( l o g 2 n ) 2 b<2(log_2n)^2 b<2(log2n)2 ,使得 n n n 不能通过以 b b b 为基的米勒检验

乘性函数

定义

算数函数

定义在所有正整数上的函数称为算数函数

乘性函数

如果算数函数 f f f 对任意两个互素的正整数 n n n m m m ,均有 f ( m n ) = f ( m ) f ( n ) f(mn)=f(m)f(n) f(mn)=f(m)f(n),称为乘性函数(或积性函数)
如果对任意两个正整数 n n n m m m ,均有 f ( m n ) = f ( m ) f ( n ) f(mn)=f(m)f(n) f(mn)=f(m)f(n),就称为完全乘性(或完全积性)函数

和函数

f f f 是一个算数函数,那么 F ( n ) = ∑ d ∣ n f ( d ) F(n)=\sum_{d|n}f(d) F(n)=dnf(d),代表 f f f n n n 的所有正因子处的值之和,函数 F F F 称为 f f f 的和函数
F ( 12 ) = = ∑ d ∣ n f ( d ) = f ( 1 ) + f ( 2 ) + f ( 3 ) + f ( 4 ) + f ( 6 ) + f ( 12 ) F(12)==\sum_{d|n}f(d)=f(1)+f(2)+f(3)+f(4)+f(6)+f(12) F(12)==dnf(d)=f(1)+f(2)+f(3)+f(4)+f(6)+f(12)

因子和函数

σ \sigma σ 定义为整数 n n n 的所有正因子之和,记为 σ ( n ) \sigma(n) σ(n)

因子个数函数

τ \tau τ 定义为正整数 n n n 的所有正因子个数,记为 τ ( n ) \tau(n) τ(n)

完全数

如果 n n n 是一个正整数且 σ ( n ) = 2 n \sigma(n)=2n σ(n)=2n,那么 n n n 称为完全数

梅森数

如果 m m m 是一个正整数,那么 M m = 2 m − 1 M_m=2^m-1 Mm=2m1 称为第 m m m 个梅森数。如果 p p p 是一个素数且 M p = 2 p − 1 M_p=2^p-1 Mp=2p1也是素数,那么 M p M_p Mp 就称为梅森素数

莫比乌斯函数

莫比乌斯函数 μ ( n ) \mu(n) μ(n) 定义为
μ ( n ) = { 1 x = 1 ( − 1 ) r x = p 1 p 2 . . . p r 其中  p i  为不同的素数 0 其他情形 \mu(n)= \begin{cases} 1 \qquad x= 1\\ (-1)^r \quad x=p_1p_2...p_r \quad 其中 \ p_i \ 为不同的素数\\ 0 \qquad 其他情形\end{cases} μ(n)= 1x=1(1)rx=p1p2...pr其中 pi 为不同的素数0其他情形

拆分与拆分的部分

一个正整数 n n n拆分是指将其表为一些正整数的和,而不计其中的求和项的次序。对于一个拆分 λ \lambda λ 我们将将其写为一个非递增的正整数序列 ( λ 1 , λ 2 , . . . , λ r ) (\lambda_1,\lambda_2,...,\lambda_r) (λ1,λ2,...,λr),其中 λ 1 + λ 2 + . . . + λ r = n \lambda_1+\lambda_2+...+\lambda_r=n λ1+λ2+...+λr=n,整数 λ 1 , λ 2 , . . . , λ r \lambda_1,\lambda_2,...,\lambda_r λ1,λ2,...,λr 称为拆分 λ \lambda λ部分

拆分函数

n n n 的不同拆分的数目记为 p ( n ) p(n) p(n) ,称 p ( n ) p(n) p(n)拆分函数,定义 p ( 0 ) = 1 p(0)=1 p(0)=1,这种规定是合理的,因为0只有一种拆分,即空拆分没有部分

有限制拆分汇总

S S S 为正整数集合的一个子集, m m m 为正整数,定义
p s ( n ) = p_s(n)= ps(n)= n n n 拆分为 S S S 中的部分的拆分数目
p D ( n ) = p^D(n)= pD(n)= n n n 拆分为不同部分的拆分数目
p m ( n ) = p_m(n)= pm(n)= n n n 拆分为 ≥ m \geq m m 的部分的拆分数目
联合上述记号进一步定义
p s D ( n ) = p_s^D(n)= psD(n)= n n n 拆分为 S S S 中不同部分的拆分数目
p m D ( n ) = p_m^D(n)= pmD(n)= n n n 拆分为 ≥ m \geq m m 的不同部分的拆分数目
p m , s ( n ) = p_{m,s}(n)= pm,s(n)= n n n 拆分为 S S S ≥ m \geq m m 的部分的拆分数目
p m , s D ( n ) = p_{m,s}^D(n)= pm,sD(n)= n n n 拆分为 S S S ≥ m \geq m m 的不同部分的拆分数目
另外,所有的奇整数集合为 O O O,所有的偶整数集合为 E E E,则 p O ( n ) p_O(n) pO(n) 表示将 n n n 拆分为奇数部分的拆分数目, p E ( n ) p_E(n) pE(n) 表示将 n n n 拆分为偶数部分的拆分数目,

共轭与自共轭

给定义拆分 n = λ 1 + λ 2 + . . . + λ r n=\lambda_1+\lambda_2+...+\lambda_r n=λ1+λ2+...+λr,其中 λ 1 ≥ λ 2 ≥ . . . ≥ λ r \lambda_1 \geq \lambda_2 \geq ... \geq \lambda_r λ1λ2...λr,定义 λ \lambda λ共轭 λ ′ = λ 1 ′ + λ 2 ′ + . . . + λ s ′ \lambda'=\lambda'_1+\lambda'_2+...+\lambda'_s λ=λ1+λ2+...+λs,其中 λ i ′ \lambda'_i λi 为拆分 λ \lambda λ 中至少为 i i i 的部分的数目。一个拆分称为是 自共轭

母函数

序列 a n ( n = 0 , 1 , 2 , 3 , . . . ) a_n(n=0,1,2,3,...) an(n=0,1,2,3,...)母函数是幂级数 ∑ n = 0 ∞ a n x n \sum^\infty_{n=0}a_nx^n n=0anxn

引理

7.1 设 p p p 是一个素数, a a a 是一个正整数,那么 σ ( p a ) = 1 + p + p 2 + . . . + p a = p a + 1 − 1 p − 1 \sigma(p^a)=1+p+p^2+...+p^a=\frac{p^{a+1}-1}{p-1} σ(pa)=1+p+p2+...+pa=p1pa+11 τ ( p a ) = a + 1 \tau(p^a)=a+1 τ(pa)=a+1

定理

7.1 如果 f f f 是一个乘性函数,且对任意正整数 n n n 有素幂因子分解 n = p 1 a 1 p 2 a 2 . . . p s a s n=p_1^{a_1}p_2^{a_2}...p_s^{a_s} n=p1a1p2a2...psas,那么 f ( n ) = f ( p 1 a 1 ) f ( p 2 a 2 ) . . . f ( p s a s ) f(n)=f(p_1^{a_1})f(p_2^{a_2})...f(p_s^{a_s}) f(n)=f(p1a1)f(p2a2)...f(psas)
7.2 如果 p p p 是素数,那么 ϕ ( p ) = p − 1 \phi(p)=p-1 ϕ(p)=p1,反之,如果 p p p 是正整数且满足 ϕ ( p ) = p − 1 \phi(p)=p-1 ϕ(p)=p1,那么 p p p 是素数
7.3 设 p p p 是素数, a a a 是一个正整数,那么 ϕ ( p a ) = p a − p a − 1 \phi(p^a)=p^a-p^{a-1} ϕ(pa)=papa1
7.4 设 m m m n n n 是互素的正整数,那么 ϕ ( m n ) = ϕ ( m ) ϕ ( n ) \phi(mn)=\phi(m)\phi(n) ϕ(mn)=ϕ(m)ϕ(n)
7.5 设 n = p 1 a 1 p 2 a 2 . . . p k a k n=p_1^{a_1}p_2^{a_2}...p_k^{a_k} n=p1a1p2a2...pkak 为正整数 n n n 的素幂因子分解,那么 ϕ ( n ) = n ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) . . . ( 1 − 1 p k ) \phi(n)=n(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_k}) ϕ(n)=n(1p11)(1p21)...(1pk1)
7.6 设 n n n 是一个大于2的正整数,那么 ϕ ( n ) \phi(n) ϕ(n) 是偶数
7.7 设 n n n 为正整数,那么 ∑ d ∣ n ϕ ( d ) = n \sum_{d|n}\phi(d)=n dnϕ(d)=n
7.8 如果 f f f 是乘性函数,那么 f f f 的和函数,即 F ( n ) = ∑ d ∣ n f ( d ) F(n)=\sum_{d|n}f(d) F(n)=dnf(d) 也是乘性函数
7.8.1 因子和函数 σ \sigma σ 和 因子个数函数 τ \tau τ 是乘性函数
7.9 设正整数 n n n 有素因子分解 n = p 1 a 1 p 2 a 2 . . . p s a s n=p_1^{a_1}p_2^{a_2}...p_s^{a_s} n=p1a1p2a2...psas,那么 σ ( n ) = p 1 a 1 + 1 − 1 p 1 − 1 ⋅ p 2 a 2 + 1 − 1 p 2 − 1 . . . p s a s + 1 − 1 p s − 1 = ∏ j = 1 s p j a j + 1 − 1 p j − 1 \sigma(n)=\frac{p_1^{a_1+1}-1}{p_1-1} \cdot \frac{p_2^{a_2+1}-1}{p_2-1}...\frac{p_s^{a_s+1}-1}{p_s-1}=\prod^s_{j=1}\frac{p_j^{a_j+1}-1}{p_j-1} σ(n)=p11p1a1+11p21p2a2+11...ps1psas+11=j=1spj1pjaj+11 τ ( n ) = ( a 1 + 1 ) ( a 2 + 1 ) . . . ( a s + 1 ) = ∏ j = 1 s ( a j + 1 ) \tau(n)=(a_1+1)(a_2+1)...(a_s+1)=\prod^s_{j=1}(a_j+1) τ(n)=(a1+1)(a2+1)...(as+1)=j=1s(aj+1)
7.10 正整数 n n n 是一个偶完全数当且仅当 n = 2 m − 1 ( 2 m − 1 ) n=2^{m-1}(2^m-1) n=2m1(2m1),其中 m ≥ 2 m \geq 2 m2 是使得 2 m − 1 2^m-1 2m1 是素数的整数
7.11 如果 m m m 是一个正整数且 2 m − 1 2^m-1 2m1 是一个素数,则 m m m 必定是素数
7.12 如果 p p p 是一个奇素数,那么梅森数 M p = 2 p − 1 M_p=2^p-1 Mp=2p1 的因子均形如 2 k p + 1 2kp+1 2kp+1,其中 k k k 是一个正整数
7.13 卢卡斯-雷默判别法

p p p 是素数,设第 p p p 个梅森数是 M p = 2 p − 1 M_p=2^p-1 Mp=2p1 ,设 r 1 = 4 r_1=4 r1=4,对 k ≥ 2 k \geq 2 k2,利用 r k ≡ r k − 1 2 − 2 ( m o d   M p ) , 0 ≤ r k < M p r_k \equiv r^2_{k-1}-2 (mod \ M_p),\quad 0 \leq r_k < M_p rkrk122(mod Mp)0rk<Mp可以递归定义一个整数序列,那么 M p M_p Mp 是素数当且仅当 r p − 2 ≡ 0 ( m o d   M P ) r_{p-2} \equiv 0 (mod \ M_P) rp20(mod MP)

p = 2 p=2 p=2 的时候不成立?是 r p − 2 ≡ 0 ( m o d   M P ) r_{p-2} \equiv 0 (mod \ M_P) rp20(mod MP) 还是 r p − 1 ≡ 0 ( m o d   M P ) r_{p-1} \equiv 0 (mod \ M_P) rp10(mod MP) 网上说法不一致,但是 r p − 1 ≡ 0 ( m o d   M P ) r_{p-1} \equiv 0 (mod \ M_P) rp10(mod MP) 的话在p=2的时候不成立?

7.13.1 设 p p p 是素数, M p = 2 p − 1 M_p=2^p-1 Mp=2p1 为第 p p p 个梅森数,可以在 O ( p 3 ) O(p^3) O(p3) 次位运算内确定 M p M_p Mp 是否是素数
7.14 莫比乌斯函数 μ ( n ) \mu(n) μ(n) 是乘性函数
7.15 莫比乌斯函数的和函数在整数 n n n 处的值 F ( n ) = ∑ d ∣ n μ ( d ) F(n)=\sum_{d|n}\mu(d) F(n)=dnμ(d),满足

∑ d ∣ n μ ( d ) = { 1 若 n = 1 0 若 n > 1 \sum_{d|n}\mu(d)= \begin{cases} 1 \quad 若 n=1\\ 0 \quad 若 n>1 \end{cases} dnμ(d)={1n=10n>1

7.16 莫比乌斯反演公式

f f f 是算数函数, F F F f f f 的和函数,对任意在整数 n n n 满足 F ( n ) = ∑ d ∣ n f ( d ) F(n)=\sum_{d|n}f(d) F(n)=dnf(d) 则对任意正整数 n n n f ( n ) = ∑ d ∣ n μ ( d ) F ( n / d ) f(n)=\sum_{d|n}\mu(d)F(n/d) f(n)=dnμ(d)F(n/d)

7.17 设 f f f 是算数函数,它的和函数为 F ( n ) = ∑ d ∣ n f ( d ) F(n)=\sum_{d|n}f(d) F(n)=dnf(d) ,那么如果 F F F 是乘性函数,则 f f f 也是乘性函数
7.18 如果 n n n 为正整数,那么将 n n n 拆分为最大部分为 r r r 的拆分数目等于将 n n n 拆分为 r r r 部分的拆分数目
7.19 p ( n ) p(n) p(n) 的母函数是 ∑ n = 0 ∞ p ( n ) x n = ∏ j = 1 ∞ 1 1 − x j \sum^\infty_{n=0} p(n)x^n=\prod^\infty_{j=1} \frac{1}{1-x^j} n=0p(n)xn=j=11xj1
7.20 p D p^D pD 的母函数是 ∑ n = 0 ∞ p D ( n ) x n = ∏ j = 1 ∞ ( 1 + x j ) \sum^\infty_{n=0} p^D(n)x^n=\prod^\infty_{j=1} (1+x^j) n=0pD(n)xn=j=1(1+xj)
7.21 设 S S S 为正整数集合的子集,则将 n n n 写为 S S S 中数的和的方式的数目 p s ( n ) p_s(n) ps(n) 的母函数以及将 n n n 写为 S S S 中不同数的和的方式的数目 p s D ( n ) p_s^D(n) psD(n) 的母函数分别是 ∑ n = 0 ∞ p s ( n ) x n = ∏ j ∈ S 1 1 − x j \sum^{\infty}_{n=0}p_s(n)x^n= \prod_{j \in S} \frac{1}{1-x^j} n=0ps(n)xn=jS1xj1 ∑ n = 0 ∞ p s D ( n ) x n = ∏ j ∈ S ( 1 + x j ) \sum^{\infty}_{n=0}p_s^D(n)x^n= \prod_{j \in S} (1+x^j) n=0psD(n)xn=jS(1+xj)
7.22 欧拉等分定理

n n n 为正整数,则 p O ( n ) = p D ( n ) p_O(n)=p^D(n) pO(n)=pD(n) ,即将 n n n 拆分为奇数部分之和的拆分数目与将 n n n 拆分为不同部分之和的拆分数目相同

7.23 我们有 ∏ i = 1 ∞ ( 1 − x i ) = ∑ n = 1 ∞ a n x n \prod^\infty_{i=1}(1-x^i)=\sum^\infty_{n=1}a_nx^n i=1(1xi)=n=1anxn,其中 a n = p ( n ∣ a_n=p(n| an=p(n拆分为偶数个不同部分之和 ) − p ( n ∣ )-p(n| )p(n拆分为奇数个不同部分之和 ) ) )
7.24 欧拉五边形数定理

n n n 为正整数,则当 n = k ( 3 k ± 1 ) / 2 n=k(3k \pm 1)/2 n=k(3k±1)/2 k k k 为正整数时, p ( n ∣ p(n| p(n拆分为偶数个不同部分之和 ) − p ( n ∣ )-p(n| )p(n拆分为奇数个不同部分之和 ) = ( − 1 ) k )=(-1)^k )=(1)k,否则为0,即 ∏ i = 1 ∞ ( 1 − x i ) = ∑ n = − ∞ ∞ ( − 1 ) n x n ( 3 n − 1 ) / 2 = 1 + ∑ n = 1 ∞ ( − 1 ) n x n ( 3 n − 1 ) / 2 ( 1 + x n ) \prod^\infty_{i=1}(1-x^i)=\sum^\infty_{n=-\infty}(-1)^nx^{n(3n-1)/2}=1+\sum^\infty_{n=1}(-1)^nx^{n(3n-1)/2}(1+x^n) i=1(1xi)=n=(1)nxn(3n1)/2=1+n=1(1)nxn(3n1)/2(1+xn)

7.25 欧拉拆分公式

n n n 为正整数,则 p ( n ) = p ( n − 1 ) + p ( n − 2 ) − p ( n − 5 ) − p ( n − 7 ) + p ( n − 12 ) + p ( n − 15 ) − . . . + ( − 1 ) k − 1 [ p ( n − ( k ( 3 k − 1 ) / 2 ) ) + p ( n − ( k ( 3 k + 1 ) / 2 ) ) ] + . . . p(n)=p(n-1)+p(n-2)-p(n-5)-p(n-7)+p(n-12)+p(n-15)-...+(-1)^{k-1}[p(n-(k(3k-1)/2))+p(n-(k(3k+1)/2))] + ... p(n)=p(n1)+p(n2)p(n5)p(n7)+p(n12)+p(n15)...+(1)k1[p(n(k(3k1)/2))+p(n(k(3k+1)/2))]+...

7.26 第一 Rogers-Ramanujan 恒等式

n n n 为正整数,则将其拆分为不同部分之和且各部分相差至少为2的拆分数与将 n n n 拆分为模5余4或1的部分之和的拆分书相等

7.27 第二 Rogers-Ramanujan 恒等式

n n n 为正整数,则将 n n n 拆分为不同部分之和而各部分至少为2且有两部分相差为2的拆分数,与将 n n n 拆分为模5余2或者3的部分之和的拆分数相等

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值