Python处理图像

Python像是叮当猫的口袋,几乎什么都能做,适合外行小白们去摸索学习,能极大的增加对编程的兴趣。

有些工具用python来实现不一定是技术上的最优选择,但可能是最简洁、最面向大众的。

介绍几个不错的处理图像的案例,并附上代码,尽可能让大家能拿来就用。

1、生成手绘图片

现在很多软件可以将照片转换成手绘形式,python也可以实现,而且定制化更强,可批量转换。

这里用到pillow库,这是非常牛逼且专业的Python图像处理库

原图:

生成手绘后:

代码:

 # -*- coding: UTF-8 -*-
from PIL import Image
import numpy as np
 
# 原始图片路径
original_image_path = "E:\\图片\\陆家嘴.jpg"
# 要生成的手绘图片路径,可自定义
handdrawn_image_path = "E:\\图片\\陆家嘴-手绘.jpg"
 
# 加载原图,将图像转化为数组数据
a=np.asarray(Image.open(original_image_path).convert('L')).astype('float')
depth=10.
 
#取图像灰度的梯度值
grad=np.gradient(a)
 
#取横纵图像梯度值
grad_x,grad_y=grad
grad_x=grad_x*depth/100.
grad_y=grad_y*depth/100.
A=np.sqrt(grad_x**2+grad_y**2+1.)
uni_x=grad_x/A
uni_y=grad_y/A
uni_z=1./A
 
#光源的俯视角度转化为弧度值
vec_el=np.pi/2.2
 
#光源的方位角度转化为弧度值
vec_az=np.pi/4.
 
#光源对x轴的影响
dx=np.cos(vec_el)*np.cos(vec_az)
dy=np.cos(vec_el)*np.sin(vec_az)
dz=np.sin(vec_el)
 
#光源归一化,把梯度转化为灰度
b=255*(dx*uni_x+dy*uni_y+dz*uni_z)
 
#避免数据越界,将生成的灰度值裁剪至0-255内
b=b.clip(0,255)
 
#图像重构
im=Image.fromarray(b.astype('uint8'))
 
print('完成')
im.save(handdrawn_image_path)

这里可以做成批量处理的转手绘脚本,大家试试。

2、生成证件照

这里用到pillow和removebg,分别用于修改照片尺寸和抠图。

这里removebg用到了AI技术,抠图边缘很柔和,效果挺不错的。

代码:

 # encoding=utf-8
from PIL import Image
from removebg import RemoveBg
 
# removebg涉及到api_key,需要到其官网申请
api_key = 'PysKLJueeoyK9NbJXXXXXXXXX'
 
def change_bgcolor(file_in, file_out, api_key, color):
  '''
      #必须为png格式
  '''
  p, s = file_in.split(".")
  rmbg = RemoveBg(api_key, 'error.log')
  rmbg.remove_background_from_img_file(file_in)
  file_no_bg = "{}.{}_no_bg.{}".format(p, s, s)
  no_bg_image = Image.open(file_no_bg)
  x, y = no_bg_image.size
  new_image = Image.new('RGBA', no_bg_image.size, color=color)
  new_image.paste(no_bg_image, (0, 0, x, y), no_bg_image)
  new_image.save(file_out)
 
 
# 修改照片尺寸
def change_size(file_in, file_out, width, height):
  image = Image.open(file_in)
  resized_image = image.resize((width, height), Image.ANTIALIAS)
  resized_image.save(file_out)
 
 
if __name__ == "__main__":
  file_in = 'E:\\girl.png'
  file_out = 'E:\\girl_cutout.png'
  # 尺寸可按需求自修改
  # change_size(file_in, file_out, width, height)
  
  # 换背景色
  color = (0, 125, 255)
  change_bgcolor(file_in, file_out, api_key, color)

3、生成艺术二维码

现在有不少二维码生成工具,python也有一款二维码生成库-myqr,可以给二维码加上图片背景,看起来很炫,效果如下

使用pip安装myqr,非常简单。

该库可以在命令行中运行,你只需要传递网址链接、图片地址等参数,就可以生成相应的二维码,二维码图片默认保存在当前目录下面。

命令行输入格式:

myqr 网址链接

比如:

myqr https://zhuanlan.zhihu.com/pydatalysis

再按enter键执行,就能生成对应链接的二维码了。

怎么融合图片呢?很简单,传入图片地址参数'-p'

比如说我d盘有一张海绵宝宝的图片,地址是:d:\hmbb.jpg即传入参数'-pd:\hmbb.jpg'在命令行键入:

myqr https://zhuanlan.zhihu.com/pydatalysis -p d:\hmbb.jpg -c

执行就能生成上图的海绵宝宝主题二维码了。

4、生成词云图

词云图一般用来凸显文本关键词,产生视觉上的焦点,利用好词云会让数据更加有说服力。

python也有专门制作词云的库-wordcloud,能自定义颜色和形状。

比如我用小丑的豆瓣评论做成一张词云图。

作词云图,首先要对收集文本,然后对文本做分词处理,最后生成词云。

这里不对前两步做详细解析,只给出词云代码:

 def wordCloudImage(wordlist,width,height,bgcolor,savepath):
    # 可以打开你喜欢的词云展现背景图
    # cloud_mask = np.array(Image.open('nezha.png'))
    # 定义词云的一些属性
    wc = WordCloud(
        width=width,  # 图幅宽度 900
        height=height,  # 图幅高度 3000
        background_color=bgcolor,  # 背景图分割颜色为白色 "black"
        # mask=cloud_mask,  # 背景图样
        max_words=300,  # 显示最大词数
        font_path='./fonts/simhei.ttf',  # 显示中文
        collocations=False,
        # min_font_size=5,  # 最小尺寸
        # max_font_size=100,  # 最大尺寸
    )
 
    # wordfile是分词后的词汇列表
    x = wc.generate(wordlist)
    # 生成词云图片
    image = x.to_image()
    # 展示词云图片
    image.show()
    # savepath是图片保存地址,保存词云图片
    wc.to_file(savepath)

5、生成微信九宫格图片

有段时间朋友圈比较流行九宫格图片,就是一张图分割成九张图,看着似乎很文艺。

这个可以用很多软件来做,python当然也能实现,只需不到50行代码。

代码:

 # 朋友圈九宫格图片制作
# encoding=utf-8
from PIL import Image
import sys
 
 
# 先将input image 填充为正方形
def fill_image(image):
    width, height = image.size
    # 选取原图片长、宽中较大值作为新图片的九宫格半径
    new_image_length = width if width > height else height
    # 生产新图片【白底】
    new_image = Image.new(image.mode, (new_image_length, new_image_length), color='white')
    # 将原图粘贴在新图上,位置为居中
    if width > height:
        new_image.paste(image, (0, int((new_image_length - height) / 2)))
    else:
        new_image.paste(image, (int((new_image_length - width) / 2), 0))
    return new_image
 
 
# 将图片切割成九宫格
def cut_image(image):
    width, height = image.size
    # 一行放3张图
    item_width = int(width / 3)
    box_list = []
    for i in range(0, 3):
        for j in range(0, 3):
            box = (j * item_width, i * item_width, (j + 1) * item_width, (i + 1) * item_width)
            box_list.append(box)
    image_list = [image.crop(box) for box in box_list]
    return image_list
 
 
# 保存图片
def save_images(image_list):
    index = 1
    for image in image_list:
        image.save('e:\\图片\\'+str(index) + '.png', 'PNG')
        index += 1
 
 
if __name__ == '__main__':
    file_path = "e:\\图片\\龙猫.jpg"
    image = Image.open(file_path)
    # image.show()
    image = fill_image(image)
    image_list = cut_image(image)
    print(len(image_list))
    save_images(image_list)

python还可以做很多有趣的图像处理,大家可以玩起来!

Graveyard分析模型是真的牛X!

品牌知名度分析实例

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值