1的平方加到n的平方的计算公式及推导过程(小学生可读版)

博客围绕求解1²+2²+3²+...+n²的值展开。先提出问题,给出答案为n(n+1)(2n+1)/6,接着阐述解题思路,将问题等价转化,尝试设f(n)为三次多项式求解,最后通过推导联立方程组得出系数,还提及有解法2和解法3。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:

求1²+2²+3²+...+n²的值

解:

1²+2²+3²+...+n²=n(n+1)(2n+1)/6

解题思路:

这题等价于,已知f(1)=1,f(n+1)=f(n)+(n+1)²。求f(n)?

如果设f(n)是二次多项式,则f(n+1)-f(n)的二次项的系数肯定是0,不可取。那么如果f(n)是三次多项式呢?好像可以试试哦。

推导过程: 

设f(n)为三次多项式,即f(n)=an³+bn²+cn+d。

那么这些系数应满足条件f(1)=1,且f(n+1)与f(n)+(n+1)²的每一项的系数都相等。

\left\{\begin{matrix} a+b+c+d=1\\ a=a\\ 3a+b=b+1\\ 3a+2b+c=c+2\\ a+b+c+d=d+1 \end{matrix}\right.

联立方程组,解得a=1/3,b=1/2,c=1/6,d=0.证毕。(当然,如果无解,说明其表达式不为三次多项式的形式)

解法2

解法3

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值