机器学习实战
欢乐的小猪
当你认为你应该成为怎样的人,你就会紧张;当你做你自己,你就会放松
展开
-
机器学习之朴素贝叶斯(入门与实战)
本文的目的是使你对朴素贝叶斯在理论上有一个入门的理解,在实战方面呢也有一个入门的小示例,看完以后你就可以开启你的进阶之路了。哈哈哈。朴素贝叶斯算法是统计学的一种分类方法,它是一种运用概率统计知识进行分类的算法。在许多场合,朴素贝叶斯方法可以与决策树、神经网络分类算法相媲美。该算法能运用到大型数据库中,而且方法简单,分类准确率高,速度快,由于贝叶斯定理假设一个属性值对给定类的影响独立于其它属性值,而此假设在实际情况中经常是不成立的,因此其分类准确率可能会下降。为此也衍生出很多降低独立性假设的贝叶斯分类算法原创 2020-11-06 11:28:09 · 993 阅读 · 1 评论 -
初识分类(鸢尾花卉数据集)
注:本文用到的模块如Numpy,Scipy,matplotlib等都可以在 pythonlibs 里下载并使用pip安装,如果没有安装过这里有安装教程。本文提供的代码基于windows的python2.x,数据和代码都可以在github上打包下载。机器是否能够识别出图像中的花朵种类?从机器学习的角度来说,我们可以通过以下方式解决这个问题:先让机器学习一下每种花朵的样本数据,然后让它根据这些信息,对...原创 2018-04-11 17:31:09 · 6563 阅读 · 0 评论