一、项目背景
某电商企业经营一家综合性线上商城,涵盖服装、美妆、数码、家居等多个品类。随着市场竞争的加剧和业务规模的不断扩大,企业希望深入了解总体销售趋势,以便制定合理的战略规划、预测未来销售情况、优化资源配置以及及时调整经营策略。
二、数据分析实施步骤
(一)明确问题与目标
- 问题提出:
- 企业在过去一段时间内的总体销售额、销售量呈现怎样的变化趋势?
- 不同品类商品的销售趋势有何差异?是否存在某些品类的销售增长或下滑对总体销售趋势产生显著影响?
- 销售趋势是否存在季节性、周期性规律?哪些外部因素(如节假日、促销活动、行业趋势等)与销售趋势的变化相关?
- 目标确定:
- 绘制总体销售额和销售量随时间变化的趋势图,清晰展示销售的长期趋势、短期波动以及季节性变化。
- 分析不同品类商品的销售贡献及趋势变化,确定核心品类和潜力品类。
- 找出影响销售趋势的关键因素,建立销售预测模型,为企业决策提供数据支持,实现未来三个月销售额预测误差控制在 10% 以内。
(二)数据收集
- 从电商平台的数据库获取过去两年的销售数据,包括订单编号、订单日期、商品名称、商品类别、销售数量、销售金额、客户信息等。
- 收集外部数据,如行业报告、宏观经济数据、节假日信息、竞争对手的部分公开销售数据(用于对比和参考)等,以便从更宏观的角度分析销售趋势的影响因素。
(三)数据清洗与整理
- 处理缺失值:检查销售数据中是否存在缺失的订单日期、商品类别、销售金额等关键信息。对于少量缺失的销售金额数据,根据同类商品的平均销售价格和销售数量进行估算补充;对于缺失较多且无法准确估算的其他非关键数据,可考虑删除对应记录,但需谨慎操作,避免数据丢失过多影响分析结果。
- 处理异常值:通过数据分布观察和业务常识判断,发现部分订单的销售数量或销售金额远超正常范围,经核实为数据录入错误或特殊大额订单(如企业批