一、项目背景
某电商平台主要经营家居用品,拥有大量的注册用户和丰富的交易数据。随着市场竞争的加剧,平台意识到提高客户忠诚度对于保持市场份额和持续盈利至关重要。因此,决定开展客户忠诚度分析项目,以深入了解客户行为和偏好,制定针对性的营销策略。
二、数据分析实施步骤
(一)明确问题与目标
- 问题提出:
- 如何衡量客户对电商平台的忠诚度?
- 哪些因素会影响客户的忠诚度?
- 不同忠诚度水平的客户群体具有怎样的特征和行为模式?
- 目标确定:
- 建立客户忠诚度评估指标体系,对客户忠诚度进行量化评估。
- 分析影响客户忠诚度的关键因素,找出提升客户忠诚度的有效途径。
- 根据客户忠诚度水平对客户进行细分,为不同群体制定个性化的营销策略,将高忠诚度客户的比例提高 15%。
(二)数据收集
- 从电商平台的数据库中获取过去 18 个月的客户交易数据,包括客户 ID、订单日期、订单金额、购买商品种类、购买频率等信息。
- 收集客户的基本信息,如注册时间、年龄、性别、地域等,以便进行综合分析。
- 获取客户与平台的互动数据,如客户评价、咨询记录、参与促销活动的情况等。
(三)数据清洗与整理
- 处理缺失值:
- 检查交易数据中是否存在缺失的订单金额、购买商品种类等关键信息。对于少量缺失的订单金额数据,根据同类商品的平均价格和购买数量进行估算补充;对于缺失较多且无法准确估算的非关键数据,可考虑删除对应记录,但需谨慎操作,避免数据丢失过多影响分析结果。
- 对于客户基本信息中的缺失值,如年龄或性别缺失,可通过其他渠道(如客户注册时填写的邮箱、电话号码等)尝试获取补充信息;若无法补充,则标记为缺失状态,在后续分析中根据具体情况处理。
- 处理异常值:
- 订单金额过高或过低的异常值,通过与同类商品的价格范围和市场行情进行对比判断。若是数据录入