hdu2852KiKi's K-Number纠结中AC

//树状数组加二分查找。。这可是我自己想出来的啊。。看了一下网上的东东,发现也是这个思路。。窃喜中。。哈哈。我的树状数组和网上的不太一样。。他是求比其小的,我是求比其大的。。很奇怪,我觉得求比其大的容易,但是不知怎么的,网上的全是求比其小得。。

 

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <fstream>
#define N 100008
using namespace std;

int tree[N],n,succ;
int use[N];
int lowbit(int k)
{
    return k&(-k);
}
void Modify(int x,int v)
{
    while (x>0)
    {
        tree[x] += v;
        x -= lowbit(x);
    }
}
int sum(int x)
{
    int ans = 0;
    while (x <= N)
    {
        ans += tree[x];
        x += lowbit(x);
    }
    return ans;
}
void bs(int x,int y)
{
    int i,k,mi,s,e;
    s = x;e = N;
    while (s<=e)
    {
        mi = (s+e)>>1;
        k = sum(mi);
        if(use[mi]&&(succ-k<y&&succ-sum(mi+1)>= y))
            break;
        if(succ-k>=y)
        {
            e = mi-1;
        }
        else
        {
            s = mi+1;
        }
    }
    printf("%d\n",mi);
}
int main()
{
    int m,i,j,k,x,y;
    while (scanf("%d",&m)!=EOF)
    {
        memset(use,0,sizeof(use));
        memset(tree,0,sizeof(tree));
        while (m--)
        {
            scanf("%d",&k);
            if(k==0)
            {
                scanf("%d",&x);
                //x++;
                use[x] ++;
                Modify(x,1);
            }
            else if(k == 1)
            {
                scanf("%d",&x);
                //x++;
                if(!use[x])
                    printf("No Elment!\n");
                else
                {
                    use[x] --;
                    Modify(x,-1);
                }
            }
            else
            {
                scanf("%d%d",&x,&y);
                x++;
                succ = sum(x);
                if(succ < y)
                {
                    printf("Not Find!\n");
                }
                else
                {
                    bs(x,y);
                }
            }
        }
    }
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值