索引:[LeetCode] Leetcode 题解索引 (C++/Java/Python/Sql)
Github: https://github.com/illuz/leetcode
005.Longest_Palindromic_Substring (Medium)
链接:
题目:https://oj.leetcode.com/problems/Longest-Palindromic-Substring/
代码(github):https://github.com/illuz/leetcode
题意:
求一个字符串中的最长回文子串。
分析:
回文的解法有不少:
- 暴力搜索 O(n^3)
- 动态规划 O(n^2),
dp[i][j] = dp[i + 1][j - 1] (if s[i] == s[j])
- 用Manacher’s ALGORITHM可达到 O(n) 时间。
本题要用第三种算法。
需要注意的是, Python 和 Java 的字符串和 C++ 的不一样,没有 \0
结尾,用’Manacher’s ALGORITHM’的时候是不一样的。
代码:
C++:
class Solution {
public:
string longestPalindrome(string s) {
int p[N<<1];
string t = "$";
for (char ch : s) {
t += '#';
t += ch;
}
t += '#';
// t为处理过的字符串,p为记录长度的数组
memset(p, 0, sizeof(p));
// mx为已判断回文串最右边位置,id为中间位置,mmax记录p数组中最大值
int mx = 0, id = 0, mmax = 0;
int len = t.length();
int right = 0;
for (int i = 1; i < len; i++) {
p[i] = mx > i ? min(p[2 * id - i], mx - i) : 1;
while (t[i + p[i]] == t[i - p[i]])
p[i]++;
if (i + p[i] > mx) {
mx = i + p[i];
id = i;
}
if (mmax < p[i]) {
mmax = p[i];
right = i;
}
}
// 最长为mmax - 1
return s.substr(right/2 - mmax/2, mmax-1);
}
};
Java:
public class Solution {
public String longestPalindrome(String s) {
int[] p = new int[2048];
StringBuilder t = new StringBuilder("$");
for (int i = 0; i < s.length(); ++i) {
t.append('#');
t.append(s.charAt(i));
}
t.append("#_");
// mx为已判断回文串最右边位置,id为中间位置,mmax记录p数组中最大值
int mx = 0, id = 0, mmax = 0;
int right = 0;
for (int i = 1; i < t.length() - 1; i++) {
p[i] = mx > i ? Math.min(p[2 * id - i], mx - i) : 1;
while (t.charAt(i + p[i]) == t.charAt(i - p[i]))
p[i]++;
if (i + p[i] > mx) {
mx = i + p[i];
id = i;
}
if (mmax < p[i]) {
mmax = p[i];
right = i;
}
}
// 最长为mmax - 1
return s.substring(right/2 - mmax/2, right/2 - mmax/2 + mmax-1);
}
}
Python:
class Solution:
# @return a string
def longestPalindrome(self, s):
t = '$#' + '#'.join(s) + '#_'
p = [0] * 4010
mx, id, mmax, right = 0, 0, 0, 0
for i in range(1, len(t) - 1):
if mx > i:
p[i] = min(p[2 * id - i], mx - i)
else:
p[i] = 1
while t[i + p[i]] == t[i - p[i]]:
p[i] += 1
if i + p[i] > mx:
mx = i + p[i]
id = i
if mmax < p[i]:
mmax = p[i]
right = i
return s[right//2 - mmax//2: right//2 - mmax//2 + mmax - 1]