【Java核心-基础】ConcurrentHashMap 高效地线程安全简介

JDK提供了一些线程安全的集合。

有粗粒度 synchronized 的集合。如,Hashtable、Collections.synchronizedXxx 包装的集合。

有细粒度,基于分离锁实现的集合。如,ConcurrentHashMap。

通常,并发包中提供的容器性能远优于早期的简单同步实现。

 

为什么需要ConcurrentHashMap?

HashMap 不是线程安全的。在并发场景中,可能会出现类似CPU占用100%之类的问题(死循环)。

Hashtable 和 Collections.synchronizedMap() 包装的HashMap:

内部都是通过 synchronized 同一把锁,来同步所有并发操作(put、get、size 等)。

这导致一个线程在操作时,其它线程只能等待,并发效率低。

它们只适合在并发程度较低的场景下使用。

 

ConcurrentHashMap 如何做到高效地线程安全?

ConcurrentHashMap 的设计实现一直在演化。不同JDK版本中的实现可能有较大改动。

Java 7

分离锁。内部分段(Segment,继承自ReentrantLock),段内是HashEntry数组,hash值相同的条目以链表形式存放。

HashEntry 内部用 volatile 的 value 字段保证可见性。利用Unsafe提供的底层能力优化性能。

Segment 的数量默认为16,可在相应的构造方法中指定(concurrencyLevel)。

并发操作时,只需锁定相应段,避免整体同步,以提高性能。

 

PUT:先对key的hash值再次hash,以减少hash冲突。然后利用Unsafe获取相应的Segment,再进行线程安全的put操作。

 

GET:需要可见性保证,没有同步逻辑。

 

Java 8 开始

  • 总体结构与HashMap相似:桶数组(Buckets) + 内部链表(bin),同步粒度更细。

  • 保留Segment定义,但仅用于保证序列化兼容性,不再有任何结构上的用处。

  • 不再使用Segment后,初始化操作简化,改为 lazy-load 形式,减小初始化开销。

  • size() 方法还是采用分而治之的算法。但使用了内部类 CounterCell(基于 LongAdder 和 Striped64)

  • 使用 synchronized 作同步。因为 synchronized 已被优化,无需过分担心性能;内存消耗比 ReentrantLock 少。

  • 更多地使用CAS等底层技术实现无锁化并发操作(Unsafe、AtomicReference等)

    如,利用 volatile 字段 sizeCtl 来实现互斥

Java代码

 

  1. pivate final Node<K, V>[] initTable() {  

  2.   Node<K,V>[] tab; int sc;  

  3.   while ((tab = table) == null || tab.length == 0) {  

  4.     if ((sc = sizeCtl) < 0)  

  5.       // 存在多线程冲突,需等待  

  6.       Thread.yield();  

  7.     else if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {  

  8.       // CAS 成功,进入真正的初始化逻辑  

  9.       ...  

  10.     }  

  11.   }  

  12.   return tab;  

  13. }  

 

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值