机器学习系列 - 入门

原创 2018年04月17日 15:18:48
机器学习的整体框架
1.有监督的机器学习整体架构,总共分为是哪个步骤
    Step1 挑选一系列的方程,称之为模型
    Step2 将方程带入训练集进行好坏的判定
    Step3 挑选最好的方程来对测试数据进行测试



学习曲线图

我理解的对于机器学习的定义:
机器学习就是用Linear Model \ Deep Learning \ SVM \ decision tree \ K-NN ..... 方法回归问题、分类问题、结构性问题等进行监督学习、半监督学习、迁移学习、无监督学习和强化学习等来解决问题的过程。


1. Regression 回归
    目标函数的输出 是 标量(scalar) 或者叫数据


2. Classification 分类
    二元分类
    多元分类

二元分类举例:邮箱判断是否为垃圾邮件

多元分类举例:大量新闻分类



分类问题分为线性问题和非线性问题
    


可以使用深度学习让电脑学会下围棋

监督学习特点:
需要找到输入和输出数据间有什么样的关系。
  • 方程的输出称之为label方程的output一般没有好的办法取得,必须凭借人工力量标注出label
往往需要给目标函数大量的输入数据, 需要大量的付出才能得到label数据
a.如何减少label需要的量的方法1: 使用 Semi- supervised Learning 半监督学习
例如:做一个分类器,要分别照片是猫还是狗? 目前只有少量的猫和狗的labeled 数据,但是又有大量的unlabeled 猫和狗的图片数据。 稍后讲解
b.如何减少label需要的量的方法2:Transfer Learning 迁移学习
例如:做一个分类器,要分别照片是猫还是狗? 目前也只有少量的猫和狗的labeled数据,但是有大量的labeled以及unlabeled的数据,但并不知道跟我们目前的任务是否有关系,很有可能这些数据都是不相干的图片。那么不相干的图片会给我们的分类器带来什么样的帮助呢??之后讲解
c.如何减少label需要的量的方法3:unsupervised Learning 无监督学习
无师自通。 机器自己看完数据后,自己输出。

d.machine learning还有一类问题叫structured learning 结构学习, 输出一个有结构性的东西。
例子:
a.语音识别
b.机器翻译
c.人脸识别


structured learning 还属于一个广袤的未知世界。 regression 和classification还只是冰山一角。



e.Reinforcement Learning  强化学习
从评价和反馈中学习

reinforcement learning实在没有大量输入数据给我们进行训练学习的情况下,才进行的,
就像alpha go,先收集所有围棋高手的棋谱,进行supervised learning,直到棋谱训练完成后。
再自己跟自己下棋,进行reinforcement learning 不断优化。

【精华】机器学习入门到精通

本课程讲解了机器学习必须知识点:机器学习与相关数学初步、数理统计与参数估计、矩阵分析与应用、凸优化问题、回归分析与工程应用、特征工程、工程流程与模型调优、最大熵模型与EM算法、推荐系统与应用、聚类算法与应用、决策树知识、支持向量SVM、贝叶斯算法、人工神经网络、卷积神经网络CNN、循环神经网络RNN与LSTM、Caffe&Tensor; Flow&MxNet; 简介、贝叶斯网络和HMM等。
  • 2018年02月09日 15:39

干货丨机器学习入门(经典好文,强烈推荐)

让我们从机器学习谈起导读:在本篇文章中,将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践。当然,本文也面对一般读者,不会对阅读有相关的前提要求...
  • R1uNW1W
  • R1uNW1W
  • 2018-01-14 00:00:00
  • 1092

机器学习入门系列01,Introduction 简介

简要介绍机器学习研究的内容,机器学习的三大步骤;不同的Model类型举例
  • zyq522376829
  • zyq522376829
  • 2017-03-26 19:18:00
  • 2353

机器学习 李宏毅 L18-Tips for Training DNN

Neural Network的一般步骤 对于DNN,训练数据的误差也反映了模型的性能,首先需要保证训练集的误差较小,然后才能进行测试。因此,存在不同的方法,针对于training data或者tes...
  • guyanbeifei
  • guyanbeifei
  • 2018-01-29 15:52:23
  • 40

从入门到放弃:机器学习小白版(一)——环境配置

从入门到放弃:机器学习小白版(一) 环境配置 以下针对的是Windows平台,Linux的也差不多是这些东西,具体安装方式需要另外搜索,以后有空补上。环境配置上,装anaconda和pycha...
  • u012692537
  • u012692537
  • 2018-03-24 14:42:41
  • 46

机器学习经典书籍--入门书-入门--深入--数学基础

转之    http://suanfazu.com/t/topic/15 前面有一篇机器学习经典论文/survey合集209。本文总结了机器学习的经典书籍,包括数学基础和算法理论的书...
  • pandav5
  • pandav5
  • 2016-03-29 10:24:06
  • 5948

机器学习系列:(一)机器学习基础

本章我们简要介绍下机器学习(Machine Learning)的基本概念。主要介绍机器学习算法的应用,监督学习和无监督学习(supervised-unsupervised learning)的应用场景...
  • u013719780
  • u013719780
  • 2016-06-01 20:37:45
  • 9546

python机器学习:从入门到精通

前段时间读了一篇文章,将如何使用python做机器学习,原文是http://dataunion.org/15057.html 这里做一个简单总结,给没有思路的小伙伴一个方向。 1)配置环境 搜“A...
  • mmc2015
  • mmc2015
  • 2016-01-21 23:04:43
  • 1612

机器学习入门系列06,Logistic Regression逻辑回归

逻辑回归和线性回归的对比;交叉熵的应用;判别方法(逻辑回归)和生成方法(用高斯描述后验概率);Softmax推导(常规推导和最大熵推导);特征转换引入神经网络...
  • zyq522376829
  • zyq522376829
  • 2017-04-10 09:09:36
  • 1428

最全的机器学习&深度学习入门视频课程集

转载自: “人工智能A7论坛aqinet.cn”  资源介绍 链接:http://pan.baidu.com/s/1kV6nWJP 密码:ryfd     链接:htt...
  • ldily110
  • ldily110
  • 2016-11-08 20:35:09
  • 21465
收藏助手
不良信息举报
您举报文章:机器学习系列 - 入门
举报原因:
原因补充:

(最多只允许输入30个字)