天池机器学习训练营task1学习笔记

一:学习目标

了解 逻辑回归 的理论

掌握 逻辑回归 的 sklearn 函数调用使用并将其运用到鸢尾花数据集预测

二:学习内容

Part1 Demo实践

Step1:库函数导入

Step2:模型训练

Step3:模型参数查看

Step4:数据和模型可视化

Step5:模型预测

Part2 基于鸢尾花(iris)数据集的逻辑回归分类实践

Step1:库函数导入

Step2:数据读取/载入

Step3:数据信息简单查看

Step4:可视化描述

Step5:利用 逻辑回归模型 在二分类上 进行训练和预测

Step5:利用 逻辑回归模型 在三分类(多分类)上 进行训练和预测

4.1 Demo实践

Step1:库函数导入

##  基础函数库

import numpy as np 

## 导入画图库

import matplotlib.pyplot as plt

import seaborn as sns

## 导入逻辑回归模型函数

from sklearn.linear_model import LogisticRegression

Step2:模型训练

##Demo演示LogisticRegression分类

## 构造数据集

x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]])

y_label = np.array([0, 0, 0, 1, 1, 1])

## 调用逻辑回归模型

lr_clf = LogisticRegression()

## 用逻辑回归模型拟合构造的数据集

lr_clf = lr_clf.fit(x_fearures, y_label) #其拟合方程为 y=w0+w1*x1+w2*x2

Step3:模型参数查看

## 查看其对应模型的w

print('the weight of Logistic Regression:',lr_clf.coef_)

## 查看其对应模型的w0

print('the intercept(w0) of Logistic Regression:',lr_clf.intercept_)

the weight of Logistic Regression: [[0.73455784 0.69539712]]

the intercept(w0) of Logistic Regression: [-0.13139986]

Step4:数据和模型可视化

## 可视化构造的数据样本点

plt.figure()

plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')

plt.title('Dataset')

plt.show()

# 可视化决策边界

plt.figure()

plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')

plt.title('Dataset')

nx, ny = 200, 100

x_min, x_max = plt.xlim()

y_min, y_max = plt.ylim()

x_grid, y_grid = np.meshgrid(np.linspace(x_min, x_max, nx),np.linspace(y_min, y_max, ny))

z_proba = lr_clf.predict_proba(np.c_[x_grid.ravel(), y_grid.ravel()])

z_proba = z_proba[:, 1].reshape(x_grid.shape)

plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()

### 可视化预测新样本

plt.figure()

## new point 1

x_fearures_new1 = np.array([[0, -1]])

plt.scatter(x_fearures_new1[:,0],x_fearures_new1[:,1], s=50, cmap='viridis')

plt.annotate(s='New point 1',xy=(0,-1),xytext=(-2,0),color='blue',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## new point 2

x_fearures_new2 = np.array([[1, 2]])

plt.scatter(x_fearures_new2[:,0],x_fearures_new2[:,1], s=50, cmap='viridis')

plt.annotate(s='New point 2',xy=(1,2),xytext=(-1.5,2.5),color='red',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## 训练样本

plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')

plt.title('Dataset')

# 可视化决策边界

plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()

Step5:模型预测

## 在训练集和测试集上分别利用训练好的模型进行预测

y_label_new1_predict = lr_clf.predict(x_fearures_new1)

y_label_new2_predict = lr_clf.predict(x_fearures_new2)

print('The New point 1 predict class:\n',y_label_new1_predict)

print('The New point 2 predict class:\n',y_label_new2_predict)

## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所以我们可以利用 predict_proba 函数预测其概率

y_label_new1_predict_proba = lr_clf.predict_proba(x_fearures_new1)

y_label_new2_predict_proba = lr_clf.predict_proba(x_fearures_new2)

print('The New point 1 predict Probability of each class:\n',y_label_new1_predict_proba)

print('The New point 2 predict Probability of each class:\n',y_label_new2_predict_proba)

The New point 1 predict class:

The New point 2 predict class:

The New point 1 predict Probability of each class:

[[0.69567724 0.30432276]]

The New point 2 predict Probability of each class:

[[0.11983936 0.88016064]]

发现训练好的回归模型将X_new1预测为了类别0(判别面左下侧),X_new2预测为了类别1(判别面右上侧)。其训练得到的逻辑回归模型的概率为0.5的判别面为上图中蓝色的线。

基于鸢尾花(iris)数据集的逻辑回归分类实践

导入一些基础的函数库包括:numpy (Python进行科学计算的基础软件包),pandas(pandas是一种快速,强大,灵活且易于使用的开源数据分析和处理工具),matplotlib和seaborn绘图。

Step1:库函数导入

##  基础函数库

import numpy as np 

import pandas as pd

## 绘图函数库

import matplotlib.pyplot as plt

import seaborn as sns

选择鸢花数据(iris)进行方法的尝试训练,该数据集一共包含5个变量,其中4个特征变量,1个目标分类变量。共有150个样本,目标变量为 花的类别 其都属于鸢尾属下的三个亚属,分别是山鸢尾 (Iris-setosa),变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。包含的三种鸢尾花的四个特征,分别是花萼长度(cm)、花萼宽度(cm)、花瓣长度(cm)、花瓣宽度(cm)。

变量 描述

sepal length 花萼长度(cm)

sepal width 花萼宽度(cm)

petal length 花瓣长度(cm)

petal width 花瓣宽度(cm)

target 鸢尾的三个亚属类别,'setosa'(0), 'versicolor'(1), 'virginica'(2)

Step2:数据读取/载入

## 我们利用 sklearn 中自带的 iris 数据作为数据载入,并利用Pandas转化为DataFrame格式

from sklearn.datasets import load_iris

data = load_iris() #得到数据特征

iris_target = data.target #得到数据对应的标签

iris_features = pd.DataFrame(data=data.data, columns=data.feature_names) #利用Pandas转化为DataFrame格式

Step3:数据信息简单查看

## 利用.info()查看数据的整体信息

iris_features.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 150 entries, 0 to 149

Data columns (total 4 columns):

#   Column             Non-Null Count  Dtype  

 

---  ------             --------------  -----  

 

0   sepal length (cm)  150 non-null    float64

 

1   sepal width (cm)   150 non-null    float64

 

2   petal length (cm)  150 non-null    float64

 

3   petal width (cm)   150 non-null    float64

 

dtypes: float64(4)

## 其对应的类别标签为,其中0,1,2分别代表'setosa', 'versicolor', 'virginica'三种不同花的类别。

iris_target

## 利用value_counts函数查看每个类别数量

pd.Series(iris_target).value_counts()

## 对于特征进行一些统计描述

iris_features.describe()

从统计描述中我们可以看到不同数值特征的变化范围。

Step4:可视化描述

## 合并标签和特征信息

iris_all = iris_features.copy() ##进行浅拷贝,防止对于原始数据的修改

iris_all['target'] = iris_target

## 特征与标签组合的散点可视化

sns.pairplot(data=iris_all,diag_kind='hist', hue= 'target')

plt.show()

可以发现,在2D情况下不同的特征组合对于不同类别的花的散点分布,以及大概的区分能力。

for col in iris_features.columns:

    sns.boxplot(x='target', y=col, saturation=0.5,palette='pastel', data=iris_all)

    plt.title(col)

    plt.show()

利用箱型图我们也可以得到不同类别在不同特征上的分布差异情况。

# 选取其前三个特征绘制三维散点图

from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(10,8))

ax = fig.add_subplot(111, projection='3d')

iris_all_class0 = iris_all[iris_all['target']==0].values

iris_all_class1 = iris_all[iris_all['target']==1].values

iris_all_class2 = iris_all[iris_all['target']==2].values

# 'setosa'(0), 'versicolor'(1), 'virginica'(2)

ax.scatter(iris_all_class0[:,0], iris_all_class0[:,1], iris_all_class0[:,2],label='setosa')

ax.scatter(iris_all_class1[:,0], iris_all_class1[:,1], iris_all_class1[:,2],label='versicolor')

ax.scatter(iris_all_class2[:,0], iris_all_class2[:,1], iris_all_class2[:,2],label='virginica')

plt.legend()

plt.show()

Step5:利用 逻辑回归模型 在二分类上 进行训练和预测

## 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。

from sklearn.model_selection import train_test_split

## 选择其类别为0和1的样本 (不包括类别为2的样本)

iris_features_part = iris_features.iloc[:100]

iris_target_part = iris_target[:100]

## 测试集大小为20%, 80%/20%分

x_train, x_test, y_train, y_test = train_test_split(iris_features_part, iris_target_part, test_size = 0.2, random_state = 2020)

## 从sklearn中导入逻辑回归模型

from sklearn.linear_model import LogisticRegression

## 定义 逻辑回归模型 

clf = LogisticRegression(random_state=0, solver='lbfgs')

# 在训练集上训练逻辑回归模型

clf.fit(x_train, y_train)

## 查看其对应的w

print('the weight of Logistic Regression:',clf.coef_)

## 查看其对应的w0

print('the intercept(w0) of Logistic Regression:',clf.intercept_)

the weight of Logistic Regression: [[ 0.45181973 -0.81743611  2.14470304  0.89838607]

the intercept(w0) of Logistic Regression: [-6.53367714]

## 在训练集和测试集上分布利用训练好的模型进行预测

train_predict = clf.predict(x_train)

test_predict = clf.predict(x_test)

from sklearn import metrics

## 利用accuracy(准确度)

print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))

print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

## 查看混淆矩阵 

confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)

print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化

plt.figure(figsize=(8, 6))

sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')

plt.xlabel('Predicted labels')

plt.ylabel('True labels')

plt.show()

The accuracy of the Logistic Regression is: 1.0

 

The accuracy of the Logistic Regression is: 1.0

可以发现其准确度为1,代表所有的样本都预测正确了。

Step6:利用 逻辑回归模型 在三分类(多分类)上 进行训练和预测

## 测试集大小为20%, 80%/20%分

x_train, x_test, y_train, y_test = train_test_split(iris_features, iris_target, test_size = 0.2, random_state = 2020)

## 定义 逻辑回归模型 

clf = LogisticRegression(random_state=0, solver='lbfgs')

# 在训练集上训练逻辑回归模型

clf.fit(x_train, y_train)

[29]:

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,

,                   intercept_scaling=1, l1_ratio=None, max_iter=100,

,                   multi_class='auto', n_jobs=None, penalty='l2',

,                   random_state=0, solver='lbfgs', tol=0.0001, verbose=0,

,                   warm_start=False)

## 查看其对应的w

print('the weight of Logistic Regression:\n',clf.coef_)

## 查看其对应的w0

print('the intercept(w0) of Logistic Regression:\n',clf.intercept_)

## 由于这个是3分类,所有我们这里得到了三个逻辑回归模型的参数,其三个逻辑回归组合起来即可实现三分类。

## 在训练集和测试集上分布利用训练好的模型进行预测

train_predict = clf.predict(x_train)

test_predict = clf.predict(x_test)

## 利用 predict_proba 函数预测其概率

train_predict_proba = clf.predict_proba(x_train)

test_predict_proba = clf.predict_proba(x_test)

print('The test predict Probability of each class:\n',test_predict_proba)

## 其中第一列代表预测为0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率。

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果

## 查看混淆矩阵

confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)

print('The confusion matrix result:\n',confusion_matrix_result

# 利用热力图对于结果进行可视化

plt.figure(figsize=(8, 6))

sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')

plt.xlabel('Predicted labels')

plt.ylabel('True labels')

plt.show()

Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数

其对应的函数图像可以表示如下:

import numpy as np

import matplotlib.pyplot as plt

x = np.arange(-5,5,0.01)

y = 1/(1+np.exp(-x))

plt.plot(x,y)

plt.xlabel('z')

plt.ylabel('y')

plt.grid()

plt.show()

学习总结:

模型的训练实质上来说就是利用数据求解出对应的模型的特定的从而得到一个针对于当前数据的特征逻辑回归模型。对于多分类而言,将多个二分类的逻辑回归组合,即可实现多分类。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值