python高级特性(自用)

1 切片

例,取list前三位元素,代码实现如下:

>> L[0:3]
['Michael', 'Sarah', 'Tracy']

L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。即索引012。

如果第一个索引是0,还可以省略:

>> L[:3]
['Michael', 'Sarah', 'Tracy']

Python支持L[-1]取倒数第一个元素,那么它也支持倒数切片:

>>> L[-2:]
['Bob', 'Jack']
>>> L[-2:-1]
['Bob']

 倒数第一个元素的索引是-1

tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple,例如:

>>> (0, 1, 2, 3, 4, 5)[:3]
(0, 1, 2)

2 迭代

如果给定一个listtuple,我们可以通过for循环来遍历这个listtuple,这种遍历我们称为迭代(Iteration)。list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict迭代

>>> d = {'a': 1, 'b': 2, 'c': 3}
>>> for key in d:
...     print(key)
...
a
c
b

这里有两个问题

1.为什么迭代出来的结果是a,c,b呢?

答:因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。

2.为什么是a,c,b而不是1,3,2呢?

答:默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时迭代key和value,可以用for k, v in d.items()

for循环里,同时引用了两个变量,如何迭代呢:

>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
...     print(x, y)
...
1 1
2 4
3 9

如果要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:

>> for i, value in enumerate(['A', 'B', 'C']):
...     print(i, value)
...
0 A
1 B
2 C

判断可迭代对象

当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行。那么,如何判断一个对象是可迭代对象呢?方法是通过collections.abc模块的Iterable类型判断:

>>> from collections.abc import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False

3 列表生成式

列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。

例如,生成x*x,x∈[1,11)

>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

for循环后面还可以加上if判断,可以筛选出仅偶数的平方:

>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]

还可以使用两层循环,可以生成全排列:

>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

列表生成式也可以使用两个变量来生成list:

>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.items()]
['y=B', 'x=A', 'z=C']

最后把一个list中所有的字符串变成小写:

>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']

if...else...

以下代码正常输出偶数:

>>> [x for x in range(1, 11) if x % 2 == 0]
[2, 4, 6, 8, 10]

注意:不能在最后的if加上else,因为跟在for后面的if是一个筛选条件

for前面的部分是一个表达式,它需要根据x计算出一个结果:

>>> [x if x % 2 == 0 else -x for x in range(1, 11)]
[-1, 2, -3, 4, -5, 6, -7, 8, -9, 10]

上述for前面的表达式x if x % 2 == 0 else -x才能根据x计算出确定的结果。

4 生成器

由于受到内存限制,列表容量有限。而且,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都浪费了。

如果列表元素可以按照某种算法推算出来,可以在循环的过程中不断推算出后续的元素,这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator

创建一个generator,第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。

怎么打印出generator的每一个元素呢?可以通过next()函数获得generator的下一个返回值:

>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

但上述不断调用next(g)过于麻烦,正确方法是使用for循环,generator也是可迭代对象:

>>> g = (x * x for x in range(10))
>>> for n in g:
...     print(n)
... 
0
1
4
9
16
25
36
49
64
81

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是用函数把它打印出来却很容易:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print(b)
        a, b = b, a + b
        n = n + 1
    return 'done'

fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

要把fib函数变成generator函数,只需要把print(b)改为yield b就可以了:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1
    return 'done'

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator函数。

那么问题来了,generator函数和普通函数的执行流程有什么?

答:普通函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

注意!!!:调用generator函数会创建一个generator对象,多次调用generator函数会创建多个相互独立的generator。

举个例子理解这句话:

def odd():
    print('step 1')
    yield 1
    print('step 2')
    yield(3)
    print('step 3')
    yield(5)

>>> next(odd())
step 1
1
>>> next(odd())
step 1
1
>>> next(odd())
step 1
1

原因在于odd()会创建一个新的generator对象,上述代码实际上创建了3个完全独立的generator,对3个generator分别调用next()当然每个都会返回第一个值。

正确的写法是创建一个generator对象,然后不断对这一个generator对象调用next()

>>> g = odd()
>>> next(g)
step 1
1
>>> next(g)
step 2
3
>>> next(g)
step 3
5

5 迭代器

可以直接作用于for循环的对象统称为可迭代对象:Iterable

可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator

可以使用isinstance()判断一个对象是否是Iterator对象:

>>> from collections.abc import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

注意:生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

listdictstrIterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值