1 切片
例,取list前三位元素,代码实现如下:
>> L[0:3]
['Michael', 'Sarah', 'Tracy']
L[0:3]
表示,从索引0
开始取,直到索引3
为止,但不包括索引3
。即索引0
,1
,2。
如果第一个索引是0
,还可以省略:
>> L[:3]
['Michael', 'Sarah', 'Tracy']
Python支持L[-1]
取倒数第一个元素,那么它也支持倒数切片:
>>> L[-2:]
['Bob', 'Jack']
>>> L[-2:-1]
['Bob']
倒数第一个元素的索引是-1
。
tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple,例如:
>>> (0, 1, 2, 3, 4, 5)[:3]
(0, 1, 2)
2 迭代
如果给定一个list
或tuple
,我们可以通过for
循环来遍历这个list
或tuple
,这种遍历我们称为迭代(Iteration)。list
这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict迭代
:
>>> d = {'a': 1, 'b': 2, 'c': 3}
>>> for key in d:
... print(key)
...
a
c
b
这里有两个问题:
1.为什么迭代出来的结果是a,c,b呢?
答:因为dict
的存储不是按照list
的方式顺序排列,所以,迭代出的结果顺序很可能不一样。
2.为什么是a,c,b而不是1,3,2呢?
答:默认情况下,dict
迭代的是key。如果要迭代value,可以用for value in d.values()
,如果要同时迭代key和value,可以用for k, v in d.items()
。
for
循环里,同时引用了两个变量,如何迭代呢:
>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
... print(x, y)
...
1 1
2 4
3 9
如果要对list
实现类似Java那样的下标循环怎么办?Python内置的enumerate
函数可以把一个list
变成索引-元素对,这样就可以在for
循环中同时迭代索引和元素本身:
>> for i, value in enumerate(['A', 'B', 'C']):
... print(i, value)
...
0 A
1 B
2 C
判断可迭代对象
当我们使用for
循环时,只要作用于一个可迭代对象,for
循环就可以正常运行。那么,如何判断一个对象是可迭代对象呢?方法是通过collections.abc
模块的Iterable
类型判断:
>>> from collections.abc import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False
3 列表生成式
列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。
例如,生成x*x,x∈[1,11)
>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
for循环后面还可以加上if判断,可以筛选出仅偶数的平方:
>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]
还可以使用两层循环,可以生成全排列:
>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
列表生成式也可以使用两个变量来生成list:
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.items()]
['y=B', 'x=A', 'z=C']
最后把一个list中所有的字符串变成小写:
>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']
if...else...
以下代码正常输出偶数:
>>> [x for x in range(1, 11) if x % 2 == 0]
[2, 4, 6, 8, 10]
注意:不能在最后的if
加上else,
因为跟在for
后面的if
是一个筛选条件
for
前面的部分是一个表达式,它需要根据x
计算出一个结果:
>>> [x if x % 2 == 0 else -x for x in range(1, 11)]
[-1, 2, -3, 4, -5, 6, -7, 8, -9, 10]
上述for
前面的表达式x if x % 2 == 0 else -x
才能根据x
计算出确定的结果。
4 生成器
由于受到内存限制,列表容量有限。而且,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都浪费了。
如果列表元素可以按照某种算法推算出来,可以在循环的过程中不断推算出后续的元素,这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
创建一个generator,第一种方法很简单,只要把一个列表生成式的[]
改成()
,就创建了一个generator:
>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>
创建L
和g
的区别仅在于最外层的[]
和()
,L
是一个list,而g
是一个generator。
怎么打印出generator的每一个元素呢?可以通过next()
函数获得generator的下一个返回值:
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
generator保存的是算法,每次调用next(g)
,就计算出g
的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration
的错误。
但上述不断调用next(g)过于麻烦
,正确方法是使用for
循环,generator也是可迭代对象:
>>> g = (x * x for x in range(10))
>>> for n in g:
... print(n)
...
0
1
4
9
16
25
36
49
64
81
generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for
循环无法实现的时候,还可以用函数来实现。
比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契数列用列表生成式写不出来,但是用函数把它打印出来却很容易:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b
n = n + 1
return 'done'
fib
函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。
要把fib
函数变成generator函数,只需要把print(b)
改为yield b
就可以了:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
return 'done'
这就是定义generator的另一种方法。如果一个函数定义中包含yield
关键字,那么这个函数就不再是一个普通函数,而是一个generator函数。
那么问题来了,generator函数和普通函数的执行流程有什么?
答:普通函数是顺序执行,遇到return
语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()
的时候执行,遇到yield
语句返回,再次执行时从上次返回的yield
语句处继续执行。
注意!!!:调用generator函数会创建一个generator对象,多次调用generator函数会创建多个相互独立的generator。
举个例子理解这句话:
def odd():
print('step 1')
yield 1
print('step 2')
yield(3)
print('step 3')
yield(5)
>>> next(odd())
step 1
1
>>> next(odd())
step 1
1
>>> next(odd())
step 1
1
原因在于odd()
会创建一个新的generator对象,上述代码实际上创建了3个完全独立的generator,对3个generator分别调用next()
当然每个都会返回第一个值。
正确的写法是创建一个generator对象,然后不断对这一个generator对象调用next()
:
>>> g = odd()
>>> next(g)
step 1
1
>>> next(g)
step 2
3
>>> next(g)
step 3
5
5 迭代器
可以直接作用于for
循环的对象统称为可迭代对象:Iterable
。
可以被next()
函数调用并不断返回下一个值的对象称为迭代器:Iterator
。
可以使用isinstance()
判断一个对象是否是Iterator
对象:
>>> from collections.abc import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False
注意:生成器都是Iterator
对象,但list
、dict
、str
虽然是Iterable
,却不是Iterator
。
把list
、dict
、str
等Iterable
变成Iterator
可以使用iter()
函数:
>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True