本文介绍了如何使用Java识别滑块验证码中的缺口位置。滑块验证码是一种常见的验证码形式,它通过要求用户拖动一个滑块来验证用户的真实性。而识别滑块验证码中的缺口位置是破解滑块验证码的一种常见方式。
Java中的图像处理库OpenCV可以用于识别缺口位置。该过程主要分为三个步骤:读取图片、识别图片边缘和缺口匹配。首先使用imread函数读取背景图片和缺口图片,然后使用Canny函数识别出图片的边缘。接着,将图片格式转换为RGB格式,并使用matchTemplate函数在背景图片中搜索对应的缺口。最后,选出其中“概率最高”的点,即为缺口匹配的位置。缺口的X轴坐标就是匹配结果中“概率最高”的点的X坐标。
为了更好地展示缺口的位置,可以将缺口用矩形框标注出来。完整代码如下:
Java
java
Copy code
import org.opencv.core.*;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.core.Core.MinMaxLocResult;
public class IdentifyGap {
public static void main(String[] args) {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// 读取背景图片和缺口图片
Mat bgImg = Imgcodecs.imread("bg.jpg");
Mat tpImg = Imgcodecs.imread("tp.png");
// 识别图片边缘
Mat bgEdge = new Mat();
Mat tpEdge = new Mat();
Imgproc.Canny(bgImg, bgEdge, 100, 200);
Imgproc.Canny(tpImg, tpEdge, 100, 200);
// 转换图片格式
Mat bgPic = new Mat();
Mat tpPic = new Mat();
Imgproc.cvtColor(bgEdge, bgPic, Imgproc.COLOR_GRAY2RGB);
Imgproc.cvtColor(tpEdge, tpPic, Imgproc.COLOR_GRAY2RGB);
// 缺口匹配
Mat res = new Mat();
Imgproc.matchTemplate(bgPic, tpPic, res, Imgproc.TM_CCOEFF_NORMED);
MinMaxLocResult mmr = Core.minMaxLoc(res);
double x = mmr.maxLoc.x; // 缺口的X轴坐标
// 绘制方框
int th = tpPic.rows();
int tw = tpPic.cols();
Point tl = new Point(mmr.maxLoc.x, mmr.maxLoc.y);
Point br = new Point(mmr.maxLoc.x + tw, mmr.maxLoc.y + th);
Imgproc.rectangle(bgImg, tl, br, new Scalar(0, 0, 255), 2);
Imgcodecs.imwrite("out.jpg", bgImg); // 保存结果
}
}
这个函数会读取背景和前景图像,将它们转换为灰度图像并计算它们之间的差异。
如果上述代码遇到问题或已更新无法使用等情况可以联系Q:2633739505或直接访问www.ttocr.com测试对接(免费得哈)