密立根油滴实验仿真实验计算

该代码实现了对密立根油滴实验的静态法和动态法测量,通过用户输入的平衡电压、下落时间和上升时间等参数,计算油滴的电量、基本电荷数及相对误差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

西安交通大学密立根油滴实验仿真实验计算

import math
# 静态法测量
pi = 3.14
d = 0.005
n = 1.85 * (10 ** (-5))
s = 0.002
p1 = 981
p2 = 1.293
g = 9.794
u = int(input("输入平衡电压:"))
tf = float(input("输入下落时间:"))
b = 0.00822
p = 101300
r0 = math.sqrt((9 * n * s) / (2 * (p1 - p2) * g * tf))
q2 = 9 * math.sqrt(2) * pi * d * math.sqrt(((n * s) ** 3) / ((p1 - p2) * g)) * (1 / u) * ((1 / tf) ** (3 / 2)) * (
            (1 / (1 + b / p * r0)) ** (3 / 2))
number = q2 // (1.602 * (10 ** (-19)))
qs = q2 / number
e = 1.602 * (10 ** (-19))
print("总电量:", q2)
print("所带基本电荷数:", number)
print("元电荷带电量", qs)
wu = (qs - e) / e
print("相对误差", wu)
import math

# 动态法测量
pi = 3.14
d = 0.005
n = 1.85 * (10 ** (-5))
s = 0.002
p1 = 981
p2 = 1.293
g = 9.794
b = 0.00822
p = 101300
u = int(input("输入平衡电压:"))
tf = float(input("输入下落时间:"))
tr = float((input("输入上升时间:")))
r0 = math.sqrt((9 * n * s) / (2 * (p1 - p2) * g * tf))
q = 9 * math.sqrt(2) * pi * d * math.sqrt(((n * s) ** 3) / ((p1 - p2) * g)) * (1 / u) * (
        (1 / tf) + (1 / tr)) * math.sqrt(1 / tf) * ((1 / (1 + b / p * r0)) ** (3 / 2))
number = q // (1.602 * (10 ** (-19)))
qs = q / number
e = 1.602 * (10 ** (-19))
print("总电量:", q)
print("所带基本电荷数:", number)
print("元电荷带电量", qs)
wu = (qs - e) / e
print("相对误差", wu)

具体代码和公式我是按照仿真实验所给的填写和计算的,可能每个学校都不太一样,可以自行修改,代码写起来不难,就是浪费时间

以下是使用Python计算油滴实验静态法数据的示例代码,希望对你有所帮助。 ```python import numpy as np # 输入实验数据 d = np.array([7.16, 8.22, 9.98, 10.10, 11.28]) * 1e-6 # 滴径 V = np.array([7.4, 7.2, 6.3, 6.1, 5.4]) * 1e-3 # 滴电荷量 g = 9.81 # 重力加速度 n_air = 1.00029 # 空气折射率 p_air = 101325 # 空气压强 T = 293 # 温度 # 计算电荷量的平均值和标准差 V_mean = np.mean(V) V_std = np.std(V, ddof=1) # 计算电荷量的误差 e_V = 0.01 / np.sqrt(3) * V_mean # 仪器误差 e_V_tot = np.sqrt(e_V ** 2 + (V_std / np.sqrt(len(V))) ** 2) # 总误差 # 计算电荷量的元电荷数 e = 1.602176634e-19 # 元电荷 q = V_mean / 4 / np.pi / n_air / e * np.sqrt(18 * np.pi * T / p_air / g) # 元电荷数 # 计算元电荷数的误差 e_q = np.sqrt((1 / (4 * np.pi * n_air * e)) ** 2 * (e_V_tot / np.sqrt(18 * np.pi * T / p_air / g)) ** 2 + (V_mean / 4 / np.pi / n_air / e / np.sqrt(18 * np.pi * T / p_air / g) / e) ** 2 * (np.sqrt(9 / 2 * np.pi * T / p_air / g) / 2 / np.pi / n_air * 0.01 / np.sqrt(3)) ** 2) # 输出结果 print(f"电荷量的平均值为:{V_mean:.4e} C") print(f"电荷量的标准差为:{V_std:.4e} C") print(f"电荷量的误差为:{e_V_tot:.4e} C") print(f"元电荷数为:{q:.4e}") print(f"元电荷数的误差为:{e_q:.4e}") ``` 在这个示例代码中,我们首先输入了实验数据,包括滴径和滴电荷量。然后我们计算了电荷量的平均值、标准差和误差,以及元电荷数和元电荷数的误差。最后输出了计算结果。 需要注意的是,这个示例代码只适用于使用静态法进行油滴实验的情况。如果使用动态法,需要使用不同的计算公式。同时,这个代码只是一个示例,具体的计算方法可能因实验条件等因素而有所不同,需要据具体情况进行修改。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值