- 博客(6)
- 资源 (2)
- 收藏
- 关注
原创 张志华-统计机器学习-随机变量
文章目录随机变量(r.v.)一. 离散型(discrete)和连续型随机变量随机变量(r.v.)在上一节中,我们对随机变量的定义进行了介绍。从本节开始,简单地认为随机变量或随机向量可映射到某可测的事件集,随机变量的概率及该可测事件集的概率测度。一. 离散型(discrete)和连续型随机变量离散型随机变量具有概率质量函数(p.m.f.):表示为:fX(x)=Pr(X=x)f_{X}(x) = P_{r}(X=x)fX(x)=Pr(X=x)连续型随机变量具有概率密度函数(p.d.f
2020-08-17 20:01:56 1915 2
原创 机器学习-生成模型与判别模型简述
文章目录生成模型与判别模型1. 辨别方法2. 举例3. 二者比较生成模型与判别模型在学习Mechine Learning相关算法时,可将有监督算法分为两类:生成模型(generative models)判别模型(discriminative models)当面对一个算法时,区分算法是生成的还是判别的对于理解算法有很大帮助。其实对于二者的区分十分简单。1. 辨别方法 生成模型中需要计算输入变量和输出变量的联合分布f(X,y)f(X,y)f(X,y) 。对于判别模型,我们希望通过最优化方
2020-08-17 14:27:34 330
原创 张志华-统计机器学习-概率论导论(续)
文章目录概率论导论(续)一. 概率测度的性质1.1 单调性1.2 容斥原理(Jordan公式)1.3 概率测度的连续性(Continuity of Probability)1.4 独立事件(Independent)二. 条件概率和贝叶斯定理2.1 条件概率(conditional probability)概率论导论(续)上一节中,张志华老师对可测空间 (Ω,A,P)(\Omega, \mathcal{A}, P)(Ω,A,P)的建立进行了介绍。本节在已经建立可测空间的基础上,进一步对概率测度P(Ai)P
2020-08-13 21:09:55 655
原创 张志华-统计机器学习-概率论导论
统计机器学习-概率论导论本节内容延续第一节的内容,进行简短回顾,并对概率论中概率测度相关知识进行介绍。一. 复习在采用贝叶斯派的方法进行参数估计(parameter estimate)过程中,对某个统计模型中的参数θ进行估计时,我们首先对θ的分布进行了人为的限定,如符合高斯分布、Gamma分布或Beta分布。由贝叶斯公式:P(θ∣X)=P(X∣θ)P(θ)P(X,θ)P(\theta|X) =\frac{P(X|\theta)P(\theta)}{P(X, \theta)} P(θ∣X)=P(X,θ
2020-08-10 21:08:28 678
原创 张志华-统计机器学习-概论
文章目录统计机器学习概论1. 统计机器学习需要掌握的知识与技术?2.统计机器学习(SML)的问题分类3. 参数估计:频率方法与贝叶斯方法统计机器学习概论本节主要内容来源于B站视频(统计机器学习 上海交通大学 张志华主讲),同时结合了笔者的既往知识。该博客会不定期更新,将张志华老师的统计机器学习课程的知识点进行梳理。1. 统计机器学习需要掌握的知识与技术?包括四个方面:矩阵知识:在机器学习中,数据保存为矩阵。如设计矩阵(design matrix),其以每个样本为行向量,该矩阵在机器学习和多元统计
2020-08-09 17:29:01 1167
C程序设计课件—1(北京大学公选课c程序设计课件)
2011-02-25
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人