张志华-统计机器学习-随机变量

随机变量(r.v.)

在上一节中,我们对随机变量的定义进行了介绍。从本节开始,简单地认为随机变量或随机向量可映射到某可测的事件集,随机变量的概率及该可测事件集的概率测度。

一. 离散型(discrete)和连续型随机变量

  1. 离散型随机变量具有概率质量函数(p.m.f.):表示为:
    f X ( x ) = P r ( X = x ) f_{X}(x) = P_{r}(X=x) fX(x)=Pr(X=x)

  2. 连续型随机变量具有概率密度函数(p.d.f.):表示为:
    ∫ a b f X ( x ) d x = P r ( a < X < b ) \int_a^{b}f_{X}(x)dx = P_{r}(a<X < b) abfX(x)dx=Pr(a<X<b)

  3. 对于p.d.f有如下引理:
    a . P r ( X = x ) = F X ( x ) − F X ( x − ) b . P r ( x < X ⩽ y ) = F X ( y ) − F X ( x ) c . P r ( X > x ) = 1 − F X ( x ) d . I f   C D F   i s   c o n t i n u o u s , P r ( a < X ⩽ b ) = P r ( a ⩽ X < b ) = P r ( a < X < b ) \begin{aligned} &a. \quad P_{r}(X=x) = F_{X}(x) - F_{X}(x^{-}) \\ &b. \quad P_{r}(x<X \leqslant y) = F_{X}(y) - F_{X}(x) \\ &c. \quad P_{r}(X > x) = 1 - F_{X}(x) \\ &d. \quad If \, CDF \, is \, continuous, P_{r}(a<X \leqslant b) = P_{r}(a \leqslant X < b) = P_{r}(a<X < b) \end{aligned} a.Pr(X=x)=FX(x)FX(x)b.Pr(x<Xy)=FX(y)FX(x)c.Pr(X>x)=1FX(x)d.IfCDFiscontinuous,Pr(a<Xb)=Pr(aX<b)=Pr(a<X<b)可见,pdf往往可由cdf求出,但需要关注cdf的连续型。

  4. 随机变量的几条有用性质:
    设随机变量X具有累积概率函数(cdf) F F F

    • F的逆函数: F − 1 ( q ) = i n f { x : F ( x ) > q } ( 0 ⩽ q ⩽ 1 ) F^{-1}(q) = inf\{x: F(x) > q \} \quad (0 \leqslant q \leqslant 1) F1(q)=inf{x:F(x)>q}(0q1)为分位数函数(quantile function)。分位数函数是进行假设检验时需要掌握的重要概念,往往我们设定希望假设检验的一类错误的概率≤0.05后计算出的cutoff value就是某分布的百分之九十五分位数。之后,将计算出的检验统计量与cutoff value进行比较,即可判断是否有理由拒绝零假设。
    • 众数(mode): 需要注意,无论是离散型随机变量和连续型随机变量都有众数,均是pmf和pdf取最大值时对应的x。
    • pmf的值域一定处于[0, 1]区间内,而pdf则仅大于0。pdf甚至可以趋向正无穷。比如,在(0, 1/n)区间内的均匀分布随机变量,当 n → + ∞ n \rightarrow + \infty n+,则区间内的   p → + ∞ \, p \rightarrow + \infty p+
    • 对于pdf显然有: ∫ − ∞ + ∞ f X ( x ) d x = 1 \int_{- \infty}^{+ \infty}f_{X}(x)dx = 1 +fX(x)dx=1,可变形为 ∫ − ∞ + ∞ d F ( x ) = 1 = ∫ − ∞ + ∞ F ( d x ) \int_{- \infty}^{+ \infty}dF(x) = 1 = \int_{- \infty}^{+ \infty} F(dx) +dF(x)=1=+F(dx)。上述变形具有意义,称为Laplace–Stielties transforms。首先,在数学意义上后者更加严谨,即明确限定pdf来源于cdf;其次,在求解随机变量的函数的概率密度时,将自变量替换为对应的函数,可方便记忆以及计算。
      下面对该条性质进行举例介绍:> 问题:设X~(0,1)区间内的均匀分布,求 Y = X 2 Y=X^2 Y=X2的概率密度函数1

解:随机变量的函数显然为双射,则有:
F Y ( y ) = P ( Y ≤ y ) = P ( − y ≤ X ≤ y ) = P ( 0 ≤ X ≤ y ) = F X ( y ) F_{Y}(y) = P(Y \leq y)=P(-\sqrt{y} \leq X \leq \sqrt{y})=P(0 \leq X \leq \sqrt{y})=F_{X}(\sqrt{y}) FY(y)=P(Yy)=P(y Xy )=P(0Xy )=FX(y )
因为随机变量函数在区间内连续,因此可直接求导:
f Y ( y ) = F Y , ( y ) = f X ( y ) ∣ d x d y ∣ f_{Y}(y)=F_{Y}^{,}(y)=f_{X}(\sqrt{y})|\frac{dx}{dy}| fY(y)=FY,(y)=fX(y )dydx
以上代换的直观理解为,找到某处y对应的全部x,而后在各处x取微元进行加和,同时用Jacobian进行统一度量(metric)。比如注意的是,采用微元法时,在各个x处函数需保证连续型

二. 均匀分布

均匀分布是最易理解的分布,即在区间A=[a, b]内,各处的概率密度相同。在 A c A^c Ac内的概率测度均为0。

三. 两点分布/伯努利分布(Bernolli)

两点分布的概率密度函数为:
f X ( x ) = p x ( 1 − p ) ( 1 − x ) ( x ∈ { 0 , 1 } ) f_{X}(x) = p^x (1-p)^(1-x) \qquad (x\in\{0, 1\}) fX(x)=px(1p)(1x)(x{0,1}) 两点分布即进行单次试验时,成功(x==1)的概率。

四. 二项式分布(Binomial)

扩展两点分布,进行n次伯努利试验,成功的次数k即符合二项式分布:
f ( x ) = ( n k ) p x ( 1 − p ) ( n − x ) ( x ∈ [ 0 , n ] ) f(x)=\dbinom{n}{k}p^x (1-p)^{(n-x)} \qquad (x \in [0, n]) f(x)=(kn)px(1p)(nx)(x[0,n])
X 1 ∼ B i ( N 1 , p ) & X 1 ∼ B i ( N 2 , p ) ⇒ X 1 + X 2 ∼ B i ( N 1 + N 2 , p ) X_{1}\thicksim Bi(N_1, p) \quad \& \quad X_{1}\thicksim Bi(N_2, p) \rArr X_1 + X_2 \sim Bi(N_1 + N_2, p) X1Bi(N1,p)&X1Bi(N2,p)X1+X2Bi(N1+N2,p)
因为如果两个二项分布中伯努利试验的成功概率相同,那么相加后相当于进行了(N1+N2)次伯努利试验。

五. 泊松分布(Possion)

泊松分布表示在单位时间内,某个事件发生的概率。
可以认为泊松分布为二项分布的进一步扩展,将单位时间划分为n段时间,假设每段时间内事件发生的概率均为p,则相当于进行了n重伯努利试验。当 n → ∞ n \rightarrow \infty n时,在这段时间内事件发生的次数k即符合伯努利分布,而次数k的倒数也就是在这段时间内,事件发生的概率。
f ( x ) = e − λ λ x x ! f(x)=e^{-\lambda} \frac{\lambda^x}{x!} f(x)=eλx!λx
X ∼ P o s s ( λ ) X \sim Poss(\lambda) XPoss(λ)时,X的期望和方差均为 λ \lambda λ
由于泊松分布是二项分布的扩展,则其也有 X 1 ∼ P o s s ( λ 1 ) & X 2 ∼ P o s s ( λ 2 ) ⇒ X 1 + X 2 ∼ P o s s ( λ 1 + λ 1 ) X_{1}\thicksim Poss(\lambda_{1}) \quad \& \quad X_{2}\thicksim Poss(\lambda_{2}) \rArr X_1 + X_2 \sim Poss(\lambda_{1} + \lambda_{1}) X1Poss(λ1)&X2Poss(λ2)X1+X2Poss(λ1+λ1)
可以认为连续的Possion分布即为Gamma分布。有关Gamma分布的内容将在下节重点讲解。

六. 两点、二项和泊松分布的意义

上述三种分布往往直接用于对因变量y的分布进行限定。在一般生成模型(generative models)中,需要对X和y的联合分布 f ( X , y ) f(X, y) f(X,y)进行计算。判断当前X或y符合的分布类型,则可进一步完成相应的计算过程。

上述三种分布在机器学习的生成模型算法,以及随机过程中的泊松过程等建模中比较重要。


  1. 例题参考何书元《概率论》,北大出版社。 ↩︎

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值