题目地址:https://leetcode.com/problems/candy/#/description
题目描述:There are N children standing in a line. Each child is assigned a rating value.
You are giving candies to these children subjected to the following requirements:
Each child must have at least one candy.
Children with a higher rating get more candies than their neighbors.
What is the minimum candies you must give?
我的代码:
class Solution {
public:
int candy(vector<int>& ratings) {
int num=0;
int s=0,l=0,r=0,n=ratings.size();
while(s<n){
l=r=0;
while(l<s&&ratings[s-l-1]<ratings[s-l]) l++;
while(s+r+1<n&&ratings[s+r+1]<ratings[s+r]) r++;
if(l>r){
num+=l+1;
s++;
}
else{
num+=((r+2)*(r+1))/2;
s+=r+1;
}
}
return num;
}
};
解题思路:
对于每一个位置的点,其获得糖的数量的最小值与其旁边的连续递减数量的长度有关。因为他要比他旁边的rating更低的人的糖更多,所以最小的数量是多一,显然,当他既不比左边rating值高,也不比右边的rating值高时,给一颗糖就可以。
那么现在对处于第k个位置的孩子,向左边数,递减序列的长度为r,显然,递减序列结束的地方,就是左右的rating值都不比他低的孩子,给一颗糖就好,所以从左边来看,这个位置的孩子给r+1颗糖就好。同理,从右边看,给l+1颗。那么同时考虑两边,显然是取两者的最大值就符合条件。如此,便得到了最小的糖果数量。
由于每一步都要寻找最长的递减序列,所以最坏的情况下,复杂度是O(n^2),当 使用一个辅助数组来做记录时,可免去左边的查询,而对右边的递减序列,可一次性求出整个递减序列的值,复杂度可优化为O(n).