二、红黑树
0、红黑树
红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何 一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近 平衡的。
红黑树的性质
- 最长路径做多是最短路径的2倍。
- 每个结点不是红色就是黑色。
- 根节点是黑色的。
- 如果一个节点是红色的,则它的两个孩子结点是黑色的【没有2个连续的红色节点】。
- 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点。
- 每个叶子结点都是黑色的(此处的叶子结点指的是空结点) 。
**思考:为什么红黑树能保证:其最长路径中节点个数不会超过最短路径节点个数的两倍? **
答:路径最短为一条路径上都是黑色结点,路径最长为红黑结点交替的一条路径,因为两条路径上黑色结点数量相同,所以最长路径不会超过最短路路径的两倍。
public class RBTree {
static class RBTreeNode {
public RBTreeNode left ;
public RBTreeNode right;
public RBTreeNode parent;
public int val;
public COLOR color;
public RBTreeNode(int val) {
this.val = val;
//我们新创建的节点,颜色默认是红色的.为什么?
this.color = COLOR.RED;
}
}
public RBTreeNode root;
public boolean insert(int val) {
//todo
}
}
**思考:在节点的定义中,为什么要将节点的默认颜色给成红色的? **
答:在红黑树的定义中,将节点的默认颜色设置为红色有以下几个原因:
- 方便维护树的性质:
- 如果新插入的节点默认为黑色,那么可能会破坏第5条性质"从任意节点到其所有后代叶子节点的简单路径上,均包含相同数目的黑色节点"。
- 将新插入的节点设为红色,可以暂时不违反第5条性质,等待后续的调整操作来维护平衡。
- 简化插入操作:
- 将新节点默认设为红色,可以简化插入操作。如果新节点是黑色,则需要进一步调整树的结构和颜色来维护第5条性质。
- 将新节点设为红色后,只需要针对违反第4条性质(“不能有两个连续的红色节点”)的情况进行局部调整,而不需要对整个树的结构进行全局调整。
- 便于理解和分析:
- 将新插入节点设为红色,使得红黑树的结构和颜色变化更容易理解和分析。
- 如果新节点是黑色,则需要考虑更多的特殊情况,增加了算法的复杂性。
总之,将红黑树节点的默认颜色设置为红色,可以简化插入操作,维护树的性质,并且有利于算法的理解和分析。这是红黑树设计的一个重要考虑因素。
1、查找
红黑树是一个特殊的二叉搜索树,查找方法和二叉搜索树是一致的
2、插入
红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:
- 按照二叉搜索的树规则插入新节点
- 检测新节点插入后,红黑树的性质是否造到破坏。因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:
约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点:
情况一: cur为红,p为红,g为黑,u存在且为红
**情况二: **cur为红,p为红,g为黑,u不存在/u为黑
**情况三: **cur为红,p为红,g为黑,u不存在/u为黑
其中用到了左单旋、右单旋操作,参考AVL树。
3、总代码
package org.example.rbtree;
public class RBTree {
static class RBTreeNode {
public RBTreeNode left ;
public RBTreeNode right;
public RBTreeNode parent;
public int val;
public COLOR color;
public RBTreeNode(int val) {
this.val = val;
//我们新创建的节点,颜色默认是红色的.为什么?
this.color = COLOR.RED;
}
}
public RBTreeNode root;
public boolean insert(int val) {
RBTreeNode node = new RBTreeNode(val);
if (root == null) {
root = node;
root.color = COLOR.BLACK;
return true;
}
RBTreeNode parent = null;
RBTreeNode cur = root;
while (cur != null) {
if (cur.val < val) {
parent = cur;
cur = cur.right;
} else if (cur.val == val) {
return false;
} else {
parent = cur;
cur = cur.left;
}
}
//cur == null
if (parent.val < val) {
parent.right = node;
} else {
parent.left = node;
}
//
node.parent = parent;
cur = node;
//红黑树来说:就需要调整颜色
while (parent != null && parent.color == COLOR.RED) {
RBTreeNode grandFather = parent.parent;//这个引用不可能为空
if(parent == grandFather.left) {
RBTreeNode uncle = grandFather.right;
if(uncle != null && uncle.color == COLOR.RED) {
parent.color = COLOR.BLACK;
uncle.color = COLOR.BLACK;
grandFather.color = COLOR.RED;
//继续向上修改
cur = grandFather;
parent = cur.parent;
}else {
//uncle不存在 或者 uncle是黑色的
//情况三:
if(cur == parent.right) {
rotateLeft(parent);
RBTreeNode tmp = parent;
parent = cur;
cur = tmp;
}//情况三 变成了情况二
//情况二
rotateRight(grandFather);
grandFather.color = COLOR.RED;
parent.color = COLOR.BLACK;
}
}else {
//parent == grandFather.right
RBTreeNode uncle = grandFather.left;
if(uncle != null && uncle.color == COLOR.RED) {
parent.color = COLOR.BLACK;
uncle.color = COLOR.BLACK;
grandFather.color = COLOR.RED;
//继续向上修改
cur = grandFather;
parent = cur.parent;
}else {
//uncle不存在 或者 uncle是黑色的
//情况三:
if(cur == parent.left) {
rotateRight(parent);
RBTreeNode tmp = parent;
parent = cur;
cur = tmp;
}//情况三 变成了情况二
//情况二
rotateLeft(grandFather);
grandFather.color = COLOR.RED;
parent.color = COLOR.BLACK;
}
}
}
root.color = COLOR.BLACK;
return true;
}
/**
* 左单旋
* @param parent
*/
private void rotateLeft(RBTreeNode parent) {
RBTreeNode subR = parent.right;
RBTreeNode subRL = subR.left;
parent.right = subRL;
subR.left = parent;
if(subRL != null) {
subRL.parent = parent;
}
RBTreeNode pParent = parent.parent;
parent.parent = subR;
if(root == parent) {
root = subR;
root.parent = null;
}else {
if(pParent.left == parent) {
pParent.left = subR;
}else {
pParent.right = subR;
}
subR.parent = pParent;
}
}
/**
* 右单旋
* @param parent
*/
private void rotateRight(RBTreeNode parent) {
RBTreeNode subL = parent.left;
RBTreeNode subLR = subL.right;
parent.left = subLR;
subL.right = parent;
//没有subLR
if(subLR != null) {
subLR.parent = parent;
}
//必须先记录
RBTreeNode pParent = parent.parent;
parent.parent = subL;
//检查 当前是不是就是根节点
if(parent == root) {
root = subL;
root.parent = null;
}else {
//不是根节点,判断这棵子树是左子树还是右子树
if(pParent.left == parent) {
pParent.left = subL;
}else {
pParent.right = subL;
}
subL.parent = pParent;
}
}
/**
* 判断当前树 是不是红黑树
* 得满足 红黑树的性质
* @return
*/
public boolean isRBTree() {
if(root == null) {
//如果一棵树是空树,那么这棵树就是红黑树
return true;
}
if(root.color != COLOR.BLACK) {
System.out.println("违反了性质:根节点必须是黑色的!");
}
//存储当前红黑树当中 最左边路径的黑色的节点个数
int blackNum = 0;
RBTreeNode cur = root;
while (cur != null) {
if(cur.color == COLOR.BLACK) {
blackNum++;
}
cur = cur.left;
}
//检查是否存在两个连续的红色节点 && 每条路径上黑色的节点的个数是一致的
return checkRedColor(root) && checkBlackNum(root,0,blackNum);
}
/**
*
* @param root
* @param pathBlackNum 每次递归的时候,计算黑色节点的个数 0
* @param blackNum 事先计算好的某条路径上的黑色节点的个数 2
* @return
*/
private boolean checkBlackNum(RBTreeNode root,int pathBlackNum,int blackNum) {
if(root == null) {
return true;
}
if(root.color == COLOR.BLACK) {
pathBlackNum++;
}
if(root.left == null && root.right == null) {
if(pathBlackNum != blackNum) {
System.out.println("违反了性质:每条路径上黑色的节点个数是不一样的!");
return false;
}
}
return checkBlackNum(root.left,pathBlackNum,blackNum) &&
checkBlackNum(root.right,pathBlackNum,blackNum);
}
/**
* 检查是否存在两个连续的红色节点
* @param root
* @return
*/
private boolean checkRedColor(RBTreeNode root) {
if(root == null) {
return true;
}
if(root.color == COLOR.RED) {
RBTreeNode parent = root.parent;
if(parent.color == COLOR.RED) {
System.out.println("违反了性质:连续出现了两个红色的节点");
return false;
}
}
return checkRedColor(root.left) && checkRedColor(root.right);
}
public void inorder(RBTreeNode root) {
if(root == null) {
return;
}
inorder(root.left);
System.out.print(root.val+" ");
inorder(root.right);
}
}