图解红黑树插入操作

二、红黑树

0、红黑树

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何 一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近 平衡的。

红黑树的性质

  1. 最长路径做多是最短路径的2倍。
  2. 每个结点不是红色就是黑色。
  3. 根节点是黑色的。
  4. 如果一个节点是红色的,则它的两个孩子结点是黑色的【没有2个连续的红色节点】。
  5. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点。
  6. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点) 。

**思考:为什么红黑树能保证:其最长路径中节点个数不会超过最短路径节点个数的两倍? **
答:路径最短为一条路径上都是黑色结点,路径最长为红黑结点交替的一条路径,因为两条路径上黑色结点数量相同,所以最长路径不会超过最短路路径的两倍。

public class RBTree {
    static class RBTreeNode {
        public RBTreeNode left ;
        public RBTreeNode right;
        public RBTreeNode parent;
        public int val;
        public COLOR color;

        public RBTreeNode(int val) {
            this.val = val;
            //我们新创建的节点,颜色默认是红色的.为什么?
            this.color = COLOR.RED;
        }
    }
    public RBTreeNode root;

    public boolean insert(int val) {
        //todo
    }
}

**思考:在节点的定义中,为什么要将节点的默认颜色给成红色的? **
答:在红黑树的定义中,将节点的默认颜色设置为红色有以下几个原因:

  1. 方便维护树的性质:
    • 如果新插入的节点默认为黑色,那么可能会破坏第5条性质"从任意节点到其所有后代叶子节点的简单路径上,均包含相同数目的黑色节点"。
    • 将新插入的节点设为红色,可以暂时不违反第5条性质,等待后续的调整操作来维护平衡。
  2. 简化插入操作:
    • 将新节点默认设为红色,可以简化插入操作。如果新节点是黑色,则需要进一步调整树的结构和颜色来维护第5条性质。
    • 将新节点设为红色后,只需要针对违反第4条性质(“不能有两个连续的红色节点”)的情况进行局部调整,而不需要对整个树的结构进行全局调整。
  3. 便于理解和分析:
    • 将新插入节点设为红色,使得红黑树的结构和颜色变化更容易理解和分析。
    • 如果新节点是黑色,则需要考虑更多的特殊情况,增加了算法的复杂性。

总之,将红黑树节点的默认颜色设置为红色,可以简化插入操作,维护树的性质,并且有利于算法的理解和分析。这是红黑树设计的一个重要考虑因素。

1、查找

红黑树是一个特殊的二叉搜索树,查找方法和二叉搜索树是一致的

2、插入

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

  1. 按照二叉搜索的树规则插入新节点
  2. 检测新节点插入后,红黑树的性质是否造到破坏。因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:

约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点:
情况一: cur为红,p为红,g为黑,u存在且为红
image.png
image.png
image.png
**情况二: **cur为红,p为红,g为黑,u不存在/u为黑
image.png
image.pngimage.png
image.png

**情况三: **cur为红,p为红,g为黑,u不存在/u为黑
image.png
image.png

其中用到了左单旋、右单旋操作,参考AVL树。

3、总代码

package org.example.rbtree;

public class RBTree {

    static class RBTreeNode {
        public RBTreeNode left ;
        public RBTreeNode right;
        public RBTreeNode parent;
        public int val;
        public COLOR color;

        public RBTreeNode(int val) {
            this.val = val;
            //我们新创建的节点,颜色默认是红色的.为什么?
            this.color = COLOR.RED;
        }
    }

    public RBTreeNode root;

    public boolean insert(int val) {
        RBTreeNode node = new RBTreeNode(val);
        if (root == null) {
            root = node;
            root.color = COLOR.BLACK;
            return true;
        }

        RBTreeNode parent = null;
        RBTreeNode cur = root;
        while (cur != null) {
            if (cur.val < val) {
                parent = cur;
                cur = cur.right;
            } else if (cur.val == val) {
                return false;
            } else {
                parent = cur;
                cur = cur.left;
            }
        }
        //cur == null
        if (parent.val < val) {
            parent.right = node;
        } else {
            parent.left = node;
        }
        //
        node.parent = parent;
        cur = node;
        //红黑树来说:就需要调整颜色

        while (parent != null && parent.color == COLOR.RED) {
            RBTreeNode grandFather = parent.parent;//这个引用不可能为空
            if(parent == grandFather.left) {
                RBTreeNode uncle = grandFather.right;
                if(uncle != null && uncle.color == COLOR.RED) {
                    parent.color = COLOR.BLACK;
                    uncle.color = COLOR.BLACK;
                    grandFather.color = COLOR.RED;
                    //继续向上修改
                    cur = grandFather;
                    parent = cur.parent;
                }else {

                    //uncle不存在 或者 uncle是黑色的
                    //情况三:
                    if(cur == parent.right) {
                        rotateLeft(parent);
                        RBTreeNode tmp = parent;
                        parent = cur;
                        cur = tmp;
                    }//情况三  变成了情况二

                    //情况二
                    rotateRight(grandFather);
                    grandFather.color = COLOR.RED;
                    parent.color = COLOR.BLACK;
                }
            }else {
                //parent == grandFather.right
                RBTreeNode uncle = grandFather.left;
                if(uncle != null && uncle.color == COLOR.RED) {
                    parent.color = COLOR.BLACK;
                    uncle.color = COLOR.BLACK;
                    grandFather.color = COLOR.RED;
                    //继续向上修改
                    cur = grandFather;
                    parent = cur.parent;
                }else {
                    //uncle不存在 或者 uncle是黑色的
                    //情况三:
                    if(cur == parent.left) {
                        rotateRight(parent);
                        RBTreeNode tmp = parent;
                        parent = cur;
                        cur = tmp;
                    }//情况三  变成了情况二
                    //情况二
                    rotateLeft(grandFather);
                    grandFather.color = COLOR.RED;
                    parent.color = COLOR.BLACK;
                }
            }
        }
        root.color = COLOR.BLACK;
        return true;
    }

    /**
     * 左单旋
     * @param parent
     */
    private void rotateLeft(RBTreeNode parent) {
        RBTreeNode subR = parent.right;
        RBTreeNode subRL = subR.left;

        parent.right = subRL;

        subR.left = parent;
        if(subRL != null) {
            subRL.parent = parent;
        }

        RBTreeNode pParent = parent.parent;
        parent.parent = subR;

        if(root == parent) {
            root = subR;
            root.parent = null;
        }else {
            if(pParent.left == parent) {
                pParent.left = subR;
            }else {
                pParent.right = subR;
            }
            subR.parent = pParent;
        }
    }

    /**
     * 右单旋
     * @param parent
     */
    private void rotateRight(RBTreeNode parent) {

        RBTreeNode subL = parent.left;
        RBTreeNode subLR = subL.right;

        parent.left = subLR;
        subL.right = parent;
        //没有subLR
        if(subLR != null) {
            subLR.parent = parent;
        }
        //必须先记录
        RBTreeNode pParent = parent.parent;
        parent.parent = subL;
        //检查 当前是不是就是根节点
        if(parent == root) {
            root = subL;
            root.parent = null;
        }else {
            //不是根节点,判断这棵子树是左子树还是右子树
            if(pParent.left == parent) {
                pParent.left = subL;
            }else {
                pParent.right = subL;
            }
            subL.parent = pParent;
        }
    }

    /**
     * 判断当前树 是不是红黑树
     *  得满足 红黑树的性质
     * @return
     */
    public boolean isRBTree() {
        if(root == null) {
            //如果一棵树是空树,那么这棵树就是红黑树
            return true;
        }

        if(root.color != COLOR.BLACK) {
            System.out.println("违反了性质:根节点必须是黑色的!");
        }

        //存储当前红黑树当中 最左边路径的黑色的节点个数
        int blackNum = 0;
        RBTreeNode cur = root;
        while (cur != null) {
            if(cur.color == COLOR.BLACK) {
                blackNum++;
            }
            cur = cur.left;
        }
        //检查是否存在两个连续的红色节点  && 每条路径上黑色的节点的个数是一致的
        return checkRedColor(root) && checkBlackNum(root,0,blackNum);
    }

    /**
     *
     * @param root
     * @param pathBlackNum 每次递归的时候,计算黑色节点的个数  0
     * @param blackNum 事先计算好的某条路径上的黑色节点的个数   2
     * @return
     */
    private boolean checkBlackNum(RBTreeNode root,int pathBlackNum,int blackNum) {
        if(root == null) {
            return true;
        }
        if(root.color == COLOR.BLACK) {
            pathBlackNum++;
        }
        if(root.left == null && root.right == null) {
            if(pathBlackNum != blackNum) {
                System.out.println("违反了性质:每条路径上黑色的节点个数是不一样的!");
                return false;
            }
        }
        return checkBlackNum(root.left,pathBlackNum,blackNum) &&
                checkBlackNum(root.right,pathBlackNum,blackNum);
    }

    /**
     * 检查是否存在两个连续的红色节点
     * @param root
     * @return
     */
    private boolean checkRedColor(RBTreeNode root) {
        if(root == null) {
            return true;
        }
        if(root.color == COLOR.RED) {
            RBTreeNode parent = root.parent;
            if(parent.color == COLOR.RED) {
                System.out.println("违反了性质:连续出现了两个红色的节点");
                return false;
            }
        }
        return checkRedColor(root.left) && checkRedColor(root.right);
    }

    public void inorder(RBTreeNode root) {
        if(root == null) {
            return;
        }
        inorder(root.left);
        System.out.print(root.val+" ");
        inorder(root.right);
    }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值