【C++贪心】P7319 「PMOI-4」生成树|普及

本文涉及知识点

C++贪心

「PMOI-4」生成树

题目背景

题目正解不会很难,反正很难的也必不会做,所以宁愿相信题目都是善良的。

——command_block 《考前小贴士》

djy 出了一道生成树的题,然后发现做法假了,就把这个题改了一下,作为这场比赛的 B。

题目描述

给定 n n n 个数,第 i i i 个数的原始权值是 w i w_i wi,你要按照某种顺序将这些数依次选择。

若当前是第 i i i 次选数,选择的原始权值 k k k,则其他所有未被选过的数的权值均加上 ( − 1 ) i + k + 1 × k (-1)^{i+k+1} \times k (1)i+k+1×k

你需要求出一种选数方案,使得选出的 n n n 个数最终权值最大

输入格式

第一行一个正整数 n n n

第二行 n n n 个整数 w i w_i wi,表示第 i i i 个数的权值。

输出格式

一行一个整数,表示最大权值和。

样例 #1

样例输入 #1

7
1 -1 -2 2 -3 3 4

样例输出 #1

66

提示

【样例解释】

依次选择编号 { 7 , 6 , 5 , 3 , 4 , 1 , 2 } \{7,6,5,3,4,1,2\} {7,6,5,3,4,1,2} 的数即可。

【数据范围】

本题采用捆绑测试

  • Subtask 1(20pts): n ≤ 7 n \le 7 n7
  • Subtask 2(30pts): n ≤ 1 0 3 n \le 10^3 n103
  • Subtask 3(30pts):保证所有的 w i ≥ 0 w_i \ge 0 wi0 或所有的 w i ≤ 0 w_i \le 0 wi0
  • Subtask 4(20pts):无特殊限制。

对于 100 % 100\% 100% 的数据满足, 1 ≤ n ≤ 1 0 5 , − 1 0 9 ≤ w ≤ 1 0 9 1 \le n \le 10^5,-10^9 \le w \le 10^9 1n105,109w109

贪心

原始权重负奇数,正偶数,奇数次选择增加的权重为正。v1 记录其绝对值,升序。
原始权重负偶数,正奇数,偶数次选择增加的权重为正。v2 记录其绝对值,升序。
ans = 原始权重之和。
i = 2 to N step 2 v2 栈顶元素第i次选择 ans += v2.back()(N-i)
i = 1 to N setp 2 v1 栈顶元素第i次选择ans += v1.back()
(N-i)

对应完后,v1和v2出栈。
如果v1非空,v1的栈顶对应 i = N/22 step -2 ans -= v1.back()(N-i)
如果v2非空,v2栈顶对应 i= (N&1?N:N-1) step -2 ans -= v2.back()*(N-i)
long long 可能溢出,故用uint64

注意:负奇数%2等于-1,不是1。

代码

核心代码

#include <iostream>
#include <sstream>
#include <vector>
#include<map>
#include<unordered_map>
#include<set>
#include<unordered_set>
#include<string>
#include<algorithm>
#include<functional>
#include<queue>
#include <stack>
#include<iomanip>
#include<numeric>
#include <math.h>
#include <climits>

#include <bitset>
using namespace std;



template<class T = int>
vector<T> Read(int n,const char* pFormat = "%d") {
	vector<T> ret;
	T d ;
	while (n--) {
		scanf(pFormat, &d);
		ret.emplace_back(d);
	}
	return ret;
}

template<class T = int>
vector<T> Read( const char* pFormat = "%d") {
	int n;
	scanf("%d", &n);
	vector<T> ret;
	T d;
	while (n--) {
		scanf(pFormat, &d);
		ret.emplace_back(d);
	}
	return ret;
}

string ReadChar(int n) {
	string str;
	char ch;
	while (n--) {
		do
		{
			scanf("%c", &ch);
		} while (('\n' == ch));
			str += ch;
	}
	return str;
}

template<class INDEX_TYPE>
class CBinarySearch
{
public:
	CBinarySearch(INDEX_TYPE iMinIndex, INDEX_TYPE iMaxIndex) :m_iMin(iMinIndex), m_iMax(iMaxIndex) {}
	template<class _Pr>
	INDEX_TYPE FindFrist(_Pr pr)
	{
		auto left = m_iMin - 1;
		auto rightInclue = m_iMax;
		while (rightInclue - left > 1)
		{
			const auto mid = left + (rightInclue - left) / 2;
			if (pr(mid))
			{
				rightInclue = mid;
			}
			else
			{
				left = mid;
			}
		}
		return rightInclue;
	}
	template<class _Pr>
	INDEX_TYPE FindEnd(_Pr pr)
	{
		int leftInclude = m_iMin;
		int right = m_iMax + 1;
		while (right - leftInclude > 1)
		{
			const auto mid = leftInclude + (right - leftInclude) / 2;
			if (pr(mid))
			{
				leftInclude = mid;
			}
			else
			{
				right = mid;
			}
		}
		return leftInclude;
	}
protected:
	const INDEX_TYPE m_iMin, m_iMax;
};


typedef unsigned long long ULL;
class Solution {
public:
	ULL MaxS(vector<int> a) {
		const ULL N = a.size();
		vector<int> v1, v2;
		for (const auto& i : a) {
			if ((i >= 0) && (0 == i % 2)) {
				v1.emplace_back(abs(i));
			}
			else if ((i < 0) && (1 & i)) {
				v1.emplace_back(abs(i));
			}
			else {
				v2.emplace_back(abs(i));
			}
		}
		sort(v1.begin(), v1.end());
		sort(v2.begin(), v2.end());
		ULL ans = accumulate(a.begin(), a.end(), 0llu);
		for (int i = 1; (i <= N) && v1.size(); i += 2) {
			ans += v1.back() * (N - i);
			v1.pop_back();
		}
		for (int i = 2; (i <= N) && v2.size(); i += 2) {
			ans += v2.back() * (N - i);
			v2.pop_back();
		}
		for (int i = N / 2 * 2; v1.size(); i -= 2) {
			ans -= v1.back() * (N - i);
			v1.pop_back();
		}
		for (int i = (N & 1) ? N : (N - 1); v2.size(); i -= 2) {
			ans -= v2.back() * (N - i);
			v2.pop_back();
		}
		return ans;
	}
};

int main() {
#ifdef _DEBUG
	freopen("a.in", "r", stdin);
#endif // DEBUG
	int n;
	scanf("%d", &n);
	auto a = Read<int>(n);
	auto res = Solution().MaxS(a);
		cout << res << std::endl;

	return 0;
}

单元测试

	vector<int> a;
		TEST_METHOD(TestMethod11)
		{
			a = { 1, - 1, - 2, 2 ,- 3, 3 ,4 };
			auto res = Solution().MaxS(a);
			AssertEx(66llu, res);
		}

扩展阅读

我想对大家说的话
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛
失败+反思=成功 成功+反思=成功

视频课程

先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

软件架构师何志丹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值