本文涉及知识点
「PMOI-4」生成树
题目背景
题目正解不会很难,反正很难的也必不会做,所以宁愿相信题目都是善良的。
——command_block 《考前小贴士》
djy 出了一道生成树的题,然后发现做法假了,就把这个题改了一下,作为这场比赛的 B。
题目描述
给定 n n n 个数,第 i i i 个数的原始权值是 w i w_i wi,你要按照某种顺序将这些数依次选择。
若当前是第 i i i 次选数,选择的原始权值为 k k k,则其他所有未被选过的数的权值均加上 ( − 1 ) i + k + 1 × k (-1)^{i+k+1} \times k (−1)i+k+1×k。
你需要求出一种选数方案,使得选出的 n n n 个数最终的权值和最大。
输入格式
第一行一个正整数 n n n。
第二行 n n n 个整数 w i w_i wi,表示第 i i i 个数的权值。
输出格式
一行一个整数,表示最大权值和。
样例 #1
样例输入 #1
7
1 -1 -2 2 -3 3 4
样例输出 #1
66
提示
【样例解释】
依次选择编号为 { 7 , 6 , 5 , 3 , 4 , 1 , 2 } \{7,6,5,3,4,1,2\} {7,6,5,3,4,1,2} 的数即可。
【数据范围】
本题采用捆绑测试。
- Subtask 1(20pts): n ≤ 7 n \le 7 n≤7。
- Subtask 2(30pts): n ≤ 1 0 3 n \le 10^3 n≤103。
- Subtask 3(30pts):保证所有的 w i ≥ 0 w_i \ge 0 wi≥0 或所有的 w i ≤ 0 w_i \le 0 wi≤0。
- Subtask 4(20pts):无特殊限制。
对于 100 % 100\% 100% 的数据满足, 1 ≤ n ≤ 1 0 5 , − 1 0 9 ≤ w ≤ 1 0 9 1 \le n \le 10^5,-10^9 \le w \le 10^9 1≤n≤105,−109≤w≤109。
贪心
原始权重负奇数,正偶数,奇数次选择增加的权重为正。v1 记录其绝对值,升序。
原始权重负偶数,正奇数,偶数次选择增加的权重为正。v2 记录其绝对值,升序。
ans = 原始权重之和。
i = 2 to N step 2 v2 栈顶元素第i次选择 ans += v2.back()(N-i)
i = 1 to N setp 2 v1 栈顶元素第i次选择ans += v1.back()(N-i)
对应完后,v1和v2出栈。
如果v1非空,v1的栈顶对应 i = N/22 step -2 ans -= v1.back()(N-i)
如果v2非空,v2栈顶对应 i= (N&1?N:N-1) step -2 ans -= v2.back()*(N-i)
long long 可能溢出,故用uint64
注意:负奇数%2等于-1,不是1。
代码
核心代码
#include <iostream>
#include <sstream>
#include <vector>
#include<map>
#include<unordered_map>
#include<set>
#include<unordered_set>
#include<string>
#include<algorithm>
#include<functional>
#include<queue>
#include <stack>
#include<iomanip>
#include<numeric>
#include <math.h>
#include <climits>
#include <bitset>
using namespace std;
template<class T = int>
vector<T> Read(int n,const char* pFormat = "%d") {
vector<T> ret;
T d ;
while (n--) {
scanf(pFormat, &d);
ret.emplace_back(d);
}
return ret;
}
template<class T = int>
vector<T> Read( const char* pFormat = "%d") {
int n;
scanf("%d", &n);
vector<T> ret;
T d;
while (n--) {
scanf(pFormat, &d);
ret.emplace_back(d);
}
return ret;
}
string ReadChar(int n) {
string str;
char ch;
while (n--) {
do
{
scanf("%c", &ch);
} while (('\n' == ch));
str += ch;
}
return str;
}
template<class INDEX_TYPE>
class CBinarySearch
{
public:
CBinarySearch(INDEX_TYPE iMinIndex, INDEX_TYPE iMaxIndex) :m_iMin(iMinIndex), m_iMax(iMaxIndex) {}
template<class _Pr>
INDEX_TYPE FindFrist(_Pr pr)
{
auto left = m_iMin - 1;
auto rightInclue = m_iMax;
while (rightInclue - left > 1)
{
const auto mid = left + (rightInclue - left) / 2;
if (pr(mid))
{
rightInclue = mid;
}
else
{
left = mid;
}
}
return rightInclue;
}
template<class _Pr>
INDEX_TYPE FindEnd(_Pr pr)
{
int leftInclude = m_iMin;
int right = m_iMax + 1;
while (right - leftInclude > 1)
{
const auto mid = leftInclude + (right - leftInclude) / 2;
if (pr(mid))
{
leftInclude = mid;
}
else
{
right = mid;
}
}
return leftInclude;
}
protected:
const INDEX_TYPE m_iMin, m_iMax;
};
typedef unsigned long long ULL;
class Solution {
public:
ULL MaxS(vector<int> a) {
const ULL N = a.size();
vector<int> v1, v2;
for (const auto& i : a) {
if ((i >= 0) && (0 == i % 2)) {
v1.emplace_back(abs(i));
}
else if ((i < 0) && (1 & i)) {
v1.emplace_back(abs(i));
}
else {
v2.emplace_back(abs(i));
}
}
sort(v1.begin(), v1.end());
sort(v2.begin(), v2.end());
ULL ans = accumulate(a.begin(), a.end(), 0llu);
for (int i = 1; (i <= N) && v1.size(); i += 2) {
ans += v1.back() * (N - i);
v1.pop_back();
}
for (int i = 2; (i <= N) && v2.size(); i += 2) {
ans += v2.back() * (N - i);
v2.pop_back();
}
for (int i = N / 2 * 2; v1.size(); i -= 2) {
ans -= v1.back() * (N - i);
v1.pop_back();
}
for (int i = (N & 1) ? N : (N - 1); v2.size(); i -= 2) {
ans -= v2.back() * (N - i);
v2.pop_back();
}
return ans;
}
};
int main() {
#ifdef _DEBUG
freopen("a.in", "r", stdin);
#endif // DEBUG
int n;
scanf("%d", &n);
auto a = Read<int>(n);
auto res = Solution().MaxS(a);
cout << res << std::endl;
return 0;
}
单元测试
vector<int> a;
TEST_METHOD(TestMethod11)
{
a = { 1, - 1, - 2, 2 ,- 3, 3 ,4 };
auto res = Solution().MaxS(a);
AssertEx(66llu, res);
}
扩展阅读
我想对大家说的话 |
---|
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。 |
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作 |
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注 |
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
失败+反思=成功 成功+反思=成功 |
视频课程
先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。