二、模型评估

1、区别欧式距离和余正弦距离?
在这里插入图片描述
参考:https://blog.csdn.net/yangpan011/article/details/79461846
2、无偏估计和有偏估计的区别?
参考:https://blog.csdn.net/u013300012/article/details/86443725
4.模型评估中不同的指标应用在什么场景中?
(1)准确率acc(分类问题)应用于样本类别比例平衡时,平均准确率,应用在不同类别样本比例非常不平衡时。
(2)针对实际的需求,权衡不同阈值下的召回率和精确率(PR曲线),使用一个指标调和平均值来综合反映模型的性能(排序模型)
(3)均方根误差用于衡量回归模型的好坏,但出现样本的离群点非常大时,从指标的角度考虑,应该选择平均绝对百分比误差指标评估
(4)二值分类器的评估指标:精确率,召回率,F1 score,PR曲线,还有一种roc曲线。 其中roc曲线能降低不同测试卷集带来的干扰,特别适用于正负样本数量不平衡的情况。若是希望看到模型在特定数据集的表现则PR曲线更加合适。
(5)欧式距离体现数值的绝对差异,余弦距离体现方向的相对差异,实际的使用看哪个的差异较为明显 kl距离,评估两个分布之间的差异
(6)A/B测试用于验证模型的最终效果,分实验组和测试组

参考:百面

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

heda3

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值