背包问题的最优化
假设有一个背包的负重最多可达8公斤,而希望在背包中装入负重范围内可得之总价物品,假设是水果好了,水果的编号、单价与重量如下所示:
0 | 李子 | 4KG | NT$4500 |
1 | 苹果 | 5KG | NT$5700 |
2 | 橘子 | 2KG | NT$2250 |
3 | 草莓 | 1KG | NT$1100 |
4 | 甜瓜 | 6KG | NT$6700 |
解法
背包问题是关于最佳化的问题,要解最佳化问题可以使用“动态规划”(Dynamic programming),从空集合开始,每增加一个元素就先求出该阶段的最佳解,直到所有的元素加入至集合中,最后得到的就是最佳解。
以背包问题为例,我们使用两个阵列value与item,value表示目前的最佳解所得之总价,item表示最后一个放至背包的水果,假设有负重量 1~8的背包8个,并对每个背包求其最佳解。
逐步将水果放入背包中,并求该阶段的最佳解:
- 放入李子
背包负重 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
value | 0 | 0 | 0 | 4500 | 4500 | 4500 | 4500 | 9000 |
item | - | - | - | 0 | 0 | 0 | 0 | 0 |
- 放入苹果
背包负重 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
value | 0 | 0 | 0 | 4500 | 5700 | 5700 | 5700 | 9000 |
item | - | - | - | 0 | 1 | 1 | 1 | 0 |
- 放入橘子
背包负重 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
value | 0 | 2250 | 2250 | 4500 | 5700 | 6750 | 7950 | 9000 |
item | - | 2 | 2 | 0 | 1 | 2 | 2 | 0 |
- 放入草莓
背包负重 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
value | 1100 | 2250 | 3350 | 4500 | 5700 | 6800 | 7950 | 9050 |
item | 3 | 2 | 3 | 0 | 1 | 3 | 2 | 3 |
- 放入甜瓜
背包负重 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
value | 1100 | 2250 | 3350 | 4500 | 5700 | 6800 | 7950 | 9050 |
item | 3 | 2 | 3 | 0 | 1 | 3 | 2 | 3 |
由最后一个表格,可以得知在背包负重8公斤时,最多可以装入9050元的水果,而最后一个装入的水果是3号,也就是草莓,装入了草莓,背包只能再放入7公斤(8-1)的水果,所以必须看背包负重7公斤时的最佳解,最后一个放入的是2号,也就是橘子,现在背包剩下负重量5公斤(7-2),所以看负重5公斤的最佳解,最后放入的是1号,也就是苹果,此时背包负重量剩下0公斤(5-5),无法再放入水果,所以求出最佳解为放入草莓、橘子与苹果,而总价为9050元。
C语言实现
#include <stdio.h> #include <stdlib.h> #define LIMIT 8 // 重量限制 #define N 5 // 物品种类 #define MIN 1 // 最小重量 struct body { char name[20]; int size; int price; }; typedef struct body object; int main(void) { int item[LIMIT+1] = {0}; int value[LIMIT+1] = {0}; int newvalue, i, s, p; object a[] = {{"李子", 4, 4500}, {"苹果", 5, 5700}, {"橘子", 2, 2250}, {"草莓", 1, 1100}, {"甜瓜", 6, 6700}}; for(i = 0; i < N; i++) { for(s = a[i].size; s <= LIMIT; s++) { p = s - a[i].size; newvalue = value[p] + a[i].price; if(newvalue > value[s]) {// 找到阶段最佳解 value[s] = newvalue; item[s] = i; } } } printf("物品\t价格\n"); for(i = LIMIT; i >= MIN; i = i - a[item[i]].size) { printf("%s\t%d\n", a[item[i]].name, a[item[i]].price); } printf("合计\t%d\n", value[LIMIT]); return 0; }