背包问题

 
 

 
 

背包问题的最优化

假设有一个背包的负重最多可达8公斤,而希望在背包中装入负重范围内可得之总价物品,假设是水果好了,水果的编号、单价与重量如下所示:

0李子4KGNT$4500
1苹果5KGNT$5700
2橘子2KGNT$2250
3草莓1KGNT$1100
4甜瓜6KGNT$6700

 

解法

背包问题是关于最佳化的问题,要解最佳化问题可以使用“动态规划”(Dynamic programming),从空集合开始,每增加一个元素就先求出该阶段的最佳解,直到所有的元素加入至集合中,最后得到的就是最佳解。 

以背包问题为例,我们使用两个阵列value与item,value表示目前的最佳解所得之总价,item表示最后一个放至背包的水果,假设有负重量 1~8的背包8个,并对每个背包求其最佳解。 

逐步将水果放入背包中,并求该阶段的最佳解:

  • 放入李子

背包负重12345678
value45004500450045009000
item
  • 放入苹果

背包负重12345678
value45005700570057009000
item111
  • 放入橘子

背包负重12345678
value2250225045005700675079509000
item22122
  • 放入草莓

背包负重12345678
value11002250335045005700680079509050
item3231323
  • 放入甜瓜

背包负重12345678
value11002250335045005700680079509050
item3231323


由最后一个表格,可以得知在背包负重8公斤时,最多可以装入9050元的水果,而最后一个装入的水果是3号,也就是草莓,装入了草莓,背包只能再放入7公斤(8-1)的水果,所以必须看背包负重7公斤时的最佳解,最后一个放入的是2号,也就是橘子,现在背包剩下负重量5公斤(7-2),所以看负重5公斤的最佳解,最后放入的是1号,也就是苹果,此时背包负重量剩下0公斤(5-5),无法再放入水果,所以求出最佳解为放入草莓、橘子与苹果,而总价为9050元。

C语言实现

#include <stdio.h> 
#include <stdlib.h> 

#define LIMIT 8   // 重量限制 
#define N 5       // 物品种类 
#define MIN 1     // 最小重量 

struct body { 
    char name[20]; 
    int size; 
    int price; 
}; 

typedef struct body object; 

int main(void) { 
    int item[LIMIT+1] = {0}; 
    int value[LIMIT+1] = {0}; 
    int newvalue, i, s, p; 

    object a[] = {{"李子", 4, 4500}, 
                  {"苹果", 5, 5700}, 
                  {"橘子", 2, 2250}, 
                  {"草莓", 1, 1100}, 
                  {"甜瓜", 6, 6700}}; 

    for(i = 0; i < N; i++) { 
        for(s = a[i].size; s <= LIMIT; s++) { 
            p = s - a[i].size; 
            newvalue = value[p] + a[i].price; 
            if(newvalue > value[s]) {// 找到阶段最佳解 
                value[s] = newvalue; 
                item[s] = i; 
            } 
        } 
    } 

    printf("物品\t价格\n"); 
    for(i = LIMIT; i >= MIN; i = i - a[item[i]].size) { 
        printf("%s\t%d\n", 
                  a[item[i]].name, a[item[i]].price); 
    } 

    printf("合计\t%d\n", value[LIMIT]); 

    return 0; 
}

                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值