- 博客(7)
- 收藏
- 关注
原创 使用mmdetection训练模型--记faster-rcnn不同backbone性能比较
使用mmdetection训练模型--记faster-rcnn不同backbone性能比较
2021-12-15 18:59:05 4479
原创 C++关于链表操作
1、从链表的末尾添加节点2、删除链表节点3、链表中倒数第K个节点4、反转链表5、从尾到头打印链表6、合并两个排序的链表7、两个链表的第一个公共节点8、判断两个链表是否有环相关问题struct ListNode{int m_data;ListNode *m_pNext;};一、从链表的末尾添加节点:ListNode *AddToTail(ListNode**pHead, int data){//创建新节点将数据保存下来ListNode *pNew = new ListNode
2021-08-26 19:07:42 432
原创 车道线检测 SCNN
论文:Spatial As Deep: Spatial CNN for Traffic Scene Understanding代码:https://github.com/cardwing/Codes-for-Lane-Detection/tree/master/SCNN-Tensorflow参考:数据集:CULane解析参考:https://www.cnblogs.com/xuanyuyt/p/12022040.html
2021-04-27 14:38:35 376
原创 ubuntu ssh 免密登录操作
ubuntu ssh 免密登录操作https://www.cnblogs.com/liubin0509/p/6211909.html
2021-04-20 16:08:16 1074
原创 用标定的方法实现单目测距原理
1.!图中 XMY 为世界坐标系 ’ ;xoy 是图像坐标系,其坐标原点o’是光轴与成像平面的交点,成像平面与光轴之 距离就是摄像机的焦距 f ; uo’ v 是像素坐标系,原点为数字图像的左上角,单位是像素。图像坐标系的原点o’在像素坐标系中的坐标是(u0,v0)。摄像机的高度为 H ,光轴与地面夹角为α ,目标点 P与光心 的连线与Y轴的夹角为β ,与光轴的夹角为γ ,点 P 在成像平面上的投影点为P ‘,位置满足小孔成像原理,点 P 在世界坐标系下的坐标为P (0,Y ) ,投影点 P’在成像坐标
2021-04-06 10:47:47 821
原创 单目测距学习小结
单目测距学习小结参考文章:Robust Vehicle Detection and Distance EstimationUnder Challenging Lighting Conditions如图所示,我们有一个前视相机(靠近后视镜),假设相机视场定义角α,相机高度H高于道路水平,在XcYcZc坐标系中,相机角度θc。假设道路场景中检测到的车辆处于(未知)位置(Xw, Yw, Zw)。设θv为指向被检测车辆平面后半部近似值与平面路面交点的投影光线(对相机而言)的夹角,自车与前车的实际距离D等于d
2021-03-30 11:06:48 733
原创 毫米波雷达和相机融合
毫米波雷达和相机融合WACV‘2021录取的一篇文章CenterFusion: Center-based Radar and Camera Fusion for 3D Object Detection ,(文章链接: https://arxiv.org/abs/2011.04841)旨在应用低成本的雷达(redar)替换主动驾驶中的激光雷达,并达到高精度3D指标检测的办法。其中代码已在https://github.com/mrnabati/CenterFusion中开源论文解读传感器融合的
2021-02-02 15:12:09 3459 3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人