416. 分割等和子集

416. 分割等和子集

在若干物品中选出一些物品,每个物品只能使用一次,这些物品恰好能够填满容量为 sum/2 的背包。

**动态规划思路:**一个一个物品去尝试,一点一点扩大考虑能够容纳的容积的大小。整个过程就像在填写一张二维表格

  1. 确定dp数组(dp table)以及下标的含义

    dp[i][j]: 表示考虑下标 [0, i] 这个区间里的所有正数,在他们当中是否能够选出一些数,使得这些书之和恰好为正数 j

  2. 确定递推公式

    不选择 nums[i]:

    dp[i][j] = dp[i - 1][j]
    

    选择 nums[i]:

    dp[i][j] = dp[i - 1][j] || dp[i][j - nums[j]]
    
  3. dp数组如何初始化

    如果能够分割成等和子集,则说明 nums 中所有元素和一定为偶数,否则不可能分割成等和子集。

    创建二维数组,[nums.length][sum/2],将初始值先置为 false

    初始化 dp 首行,当然也要防止下标越界

    if (nums[0] <= target) {
        dp[0][nums[0]] = true;
    }
    
  4. 确定遍历顺序

    首先遍历 nums 数组,再遍历目标整数

    颠倒顺序不受影响

  5. 举例推导dp数组

在这里插入图片描述

/**
 * @param {number[]} nums
 * @return {boolean}
 */
var canPartition = function (nums) {
    let len = nums.length;
    let sum = 0;

    for (let val of nums) sum += val;
    if (sum & 1) {
        return false;
    }

    let target = sum / 2;
    let dp = new Array(len).fill().map(item => new Array(target + 1).fill(false));

    if (nums[0] <= target) {
        dp[0][nums[0]] = true;
    }

    for (let i = 1; i < len; i++) {
        for (let j = 0; j <= target; j++) {
            dp[i][j] = dp[i - 1][j]

            if (nums[i] === j) {
                dp[i][j] = true;
                continue;
            }

            if (nums[i] < j) {
                dp[i][j] = dp[i - 1][j] || dp[i - 1][j - nums[i]]
            }
        }
    }

		// 谨记 dp[i][j] 为 [0,1] 区间中选取一些数,使得这些数的和恰好为整数 j
    return dp[len - 1][target];
};
/**
 * @param {number[]} nums
 * @return {boolean}
 */
var canPartition = function (nums) {
    let len = nums.length;
    let sum = 0;

    for (let val of nums) sum += val;
    if (sum & 1) {
        return false;
    }

    let target = sum / 2;
    let dp = new Array(len).fill().map(item => new Array(target + 1).fill(false));

    dp[0][0] = true;

    if (nums[0] <= target) {
        dp[0][nums[0]] = true;
    }

    for (let i = 1; i < len; i++) {
        for (let j = 0; j <= target; j++) {
            dp[i][j] = dp[i - 1][j]

            if (nums[i] <= j) {
                dp[i][j] = dp[i - 1][j] || dp[i - 1][j - nums[i]]
            }
        }
        if (dp[i][target]) return true;
    }

    return dp[len - 1][target];
};

一维滚动数组优化

/**
 * @param {number[]} nums
 * @return {boolean}
 */
var canPartition = function (nums) {
    let len = nums.length;
    let sum = 0;

    for (let val of nums) sum += val;
    if (sum & 1) {
        return false;
    }

    let target = sum / 2;
    let dp = new Array(target + 1).fill(false);

    dp[0] = true;

    if (nums[0] <= target) {
        dp[0][nums[0]] = true;
    }

    for (let i = 1; i < len; i++) {
        for (let j = target; j >= 0 && nums[i] <= j; j--) {
            dp[j] = dp[j] || dp[j - nums[i]]
        }
        if (dp[target]) return true;
    }

    return dp[target];
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值