c# 插值搜索-迭代与递归(Interpolation Search)

本文介绍了插值搜索算法,一种针对均匀分布数组的搜索方法,它结合了线性插值思想,平均情况下具有O(log2(log2n))的时间复杂度。文章详细解释了算法步骤和两种实现方式,并对比了与线性搜索和二分查找的性能。
摘要由CSDN通过智能技术生成

        给定一个由 n 个均匀分布值 arr[] 组成的排序数组,编写一个函数来搜索数组中的特定元素 x。 
        线性搜索需要 O(n) 时间找到元素,跳转搜索需要 O(? n) 时间,二分搜索需要 O(log n) 时间。 插值搜索是对实例二分搜索的改进,其中排序数组中的值是均匀分布的。

        插值在一组离散的已知数据点的范围内构造新的数据点。二分查找总是到中间元素去检查。

        另一方面,插值搜索可以根据正在搜索的键的值去不同的位置。例如,如果键的值更接近最后一个元素,则插值搜索很可能从末尾侧开始搜索。为了找到要搜索的位置,它使用以下公式。 

// 公式的思想是
当要搜索的元素更接近arr[hi]时,返回较高的pos值。 
// 当接近 arr[lo] 时值更小
arr[] ==> 需要查找元素的数组
x ==> 要搜索的元素
lo ==> arr[] 中的起始索引
hi ==> arr[] 中的结束索引

        有许多不同的插值方法,其中一种称为线性插值。线性插值采用两个数据点,我们假设为 (x1,y1) 和 (x2,y2),公式为:在点 (x,y) 处。
        该算法的工作原理类似于我们在字典中搜索单词。插值搜索算法改进了二分搜索算法。查找值的公式为:K = 数据-低/高-低。
        K是一个常数,用于缩小搜索空间。在二分查找的情况下,该常数的值为:K=(low+high)/2。

pos 的公式可以推导如下:
        我们假设数组的元素是线性分布的,直线的一般方程:y = m*x + c,y 是数组中的值,x 是其索引。
现在将 lo、hi 和 x 的值代入方程:
arr[hi] = m*hi+c ----(1) 
arr[lo] = m*lo+c ----(2) 
x = m* pos + c ----(3) 
m = (arr[hi] - arr[lo] )/ (hi - lo)
从 (3) x - arr[lo] = m * (pos - lo) 减去 eqxn (2) lo) 
lo + (x - arr[lo])/m = pos 
pos = lo + (x - arr[lo]) *(hi - lo)/(arr[hi] - arr[lo])

算法
除了上面的划分逻辑之外,插值算法的其余部分是相同的。 
        步骤1:在循环中,使用探针位置公式计算“pos”的值。 
        步骤2:如果匹配,则返回该项的索引,并退出。 
        步骤3:如果该项小于arr[pos],则计算左子数组的探针位置。否则,在右侧子数组中计算相同的值。 
        步骤4:重复直到找到匹配项或子数组减少到零。

下面是算法的实现: 

// C# program to implement 
// interpolation search
using System;
 
class GFG{
 
// If x is present in 
// arr[0..n-1], then 
// returns index of it, 
// else returns -1.
static int interpolationSearch(int []arr, int lo, 
                               int hi, int x)
{
    int pos;
     
    // Since array is sorted, an element
    // present in array must be in range
    // defined by corner
    if (lo <= hi && x >= arr[lo] && 
                    x <= arr[hi])
    {
         
        // Probing the position 
        // with keeping uniform 
        // distribution in mind.
        pos = lo + (((hi - lo) / 
                (arr[hi] - arr[lo])) * 
                      (x - arr[lo]));
 
        // Condition of 
        // target found
        if(arr[pos] == x) 
        return pos; 
         
        // If x is larger, x is in right sub array 
        if(arr[pos] < x) 
            return interpolationSearch(arr, pos + 1,
                                       hi, x); 
         
        // If x is smaller, x is in left sub array 
        if(arr[pos] > x) 
            return interpolationSearch(arr, lo, 
                                       pos - 1, x); 
    } 
    return -1;
}
 
// Driver Code 
public static void Main() 
{
     
    // Array of items on which search will 
    // be conducted. 
    int []arr = new int[]{ 10, 12, 13, 16, 18, 
                           19, 20, 21, 22, 23, 
                           24, 33, 35, 42, 47 };
                            
    // Element to be searched                       
    int x = 18; 
    int n = arr.Length;
    int index = interpolationSearch(arr, 0, n - 1, x);
     
    // If element was found
    if (index != -1)
        Console.WriteLine("Element found at index " + 
                           index);
    else
        Console.WriteLine("Element not found.");
}
}
 
// This code is contributed by equbalzeeshan 

输出
在索引 4 处找到的元素
时间复杂度:平均情况为O(log 2 (log 2 n)),最坏情况为 O(n) 
辅助空间复杂度: O(1) 

另一种方法:
这是插值搜索的迭代方法。
步骤1:在循环中,使用探针位置公式计算“pos”的值。 
步骤2:如果匹配,则返回该项的索引,并退出。 
步骤3:如果该项小于arr[pos],则计算左子数组的探针位置。否则,在右侧子数组中计算相同的值。 
步骤4:重复直到找到匹配项或子数组减少到零。

下面是算法的实现:  

// C# program to implement interpolation search by using
// iteration approach
using System;
 
class Program
{
    // Interpolation Search function
    static int InterpolationSearch(int[] arr, int n, int x)
    {
        int low = 0;
        int high = n - 1;
   
        while (low <= high && x >= arr[low] && x <= arr[high]) 
        {
            if (low == high) 
            {
                if (arr[low] == x) 
                    return low; 
                return -1; 
            }
   
            int pos = low + (int)(((float)(high - low) / (arr[high] - arr[low])) * (x - arr[low]));
   
            if (arr[pos] == x) 
                return pos; 
   
            if (arr[pos] < x) 
                low = pos + 1; 
   
            else
                high = pos - 1; 
        }
   
        return -1;
    }
   
    // Main function
    static void Main(string[] args)
    {
        int[] arr = {10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 24, 33, 35, 42, 47};
        int n = arr.Length;
   
        int x = 18;
        int index = InterpolationSearch(arr, n, x);
   
        if (index != -1) 
            Console.WriteLine("Element found at index " + index);
        else
            Console.WriteLine("Element not found");
    }
}
 
// This code is contributed by Susobhan Akhuli 

输出
在索引 4 处找到的元素
时间复杂度:平均情况为 O(log2(log2 n)),最坏情况为 O(n) 
辅助空间复杂度: O(1)  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值