C++ 如何检查两个给定的线段是否相交(How to check if two given line segments intersect)

给定两条线段(p1, q1)和(p2, q2),判断给定的线段是否相交。
在讨论解决方案之前,让我们先定义方向的概念。平面中有序点三元组的方向可以是 
–逆时针 
–顺时针 
–共线 

下图显示了(a,b,c) 的不同可能方向

 方向在这里有什么用处? 
两条线段(p1,q1)和(p2,q2)相交,当且仅当以下两个条件之一得到验证时

1. 一般情况: 
– ( p1 , q1 , p2 ) 和 ( p1 , q1 , q2 ) 具有不同的方向,并且 
– ( p2 , q2 ,  p1 ) 和 ( p2 , q2 ,  q1 ) 具有不同的方向。

例子:  

2.特殊情况 
– ( p1 , q1 , p2 )、( p1 , q1 , q2 )、( p2 , q2 , p1 ) 和 ( p2 , q2 , q1 ) 均为共线,且 – ( p1 , q1 ) 和 ( p2 , q2 ) 
的 x 投影相交 – ( p1 , q1 ) 和 ( p2 , q2 )的 y 投影相交

例子:  

以下是基于上述想法的实现:

// A C++ program to check if two given line segments intersect 
#include <iostream> 
using namespace std; 
  
struct Point 

    int x; 
    int y; 
}; 
  
// Given three collinear points p, q, r, the function checks if 
// point q lies on line segment 'pr' 
bool onSegment(Point p, Point q, Point r) 

    if (q.x <= max(p.x, r.x) && q.x >= min(p.x, r.x) && 
        q.y <= max(p.y, r.y) && q.y >= min(p.y, r.y)) 
       return true; 
  
    return false; 

  
// To find orientation of ordered triplet (p, q, r). 
// The function returns following values 
// 0 --> p, q and r are collinear 
// 1 --> Clockwise 
// 2 --> Counterclockwise 
int orientation(Point p, Point q, Point r) 

    // See https://www.geeksforgeeks.org/orientation-3-ordered-points/ 
    // for details of below formula. 
    int val = (q.y - p.y) * (r.x - q.x) - 
              (q.x - p.x) * (r.y - q.y); 
  
    if (val == 0) return 0;  // collinear 
  
    return (val > 0)? 1: 2; // clock or counterclock wise 

  
// The main function that returns true if line segment 'p1q1' 
// and 'p2q2' intersect. 
bool doIntersect(Point p1, Point q1, Point p2, Point q2) 

    // Find the four orientations needed for general and 
    // special cases 
    int o1 = orientation(p1, q1, p2); 
    int o2 = orientation(p1, q1, q2); 
    int o3 = orientation(p2, q2, p1); 
    int o4 = orientation(p2, q2, q1); 
  
    // General case 
    if (o1 != o2 && o3 != o4) 
        return true; 
  
    // Special Cases 
    // p1, q1 and p2 are collinear and p2 lies on segment p1q1 
    if (o1 == 0 && onSegment(p1, p2, q1)) return true; 
  
    // p1, q1 and q2 are collinear and q2 lies on segment p1q1 
    if (o2 == 0 && onSegment(p1, q2, q1)) return true; 
  
    // p2, q2 and p1 are collinear and p1 lies on segment p2q2 
    if (o3 == 0 && onSegment(p2, p1, q2)) return true; 
  
     // p2, q2 and q1 are collinear and q1 lies on segment p2q2 
    if (o4 == 0 && onSegment(p2, q1, q2)) return true; 
  
    return false; // Doesn't fall in any of the above cases 

  
// Driver program to test above functions 
int main() 

    struct Point p1 = {1, 1}, q1 = {10, 1}; 
    struct Point p2 = {1, 2}, q2 = {10, 2}; 
  
    doIntersect(p1, q1, p2, q2)? cout << "Yes\n": cout << "No\n"; 
  
    p1 = {10, 0}, q1 = {0, 10}; 
    p2 = {0, 0}, q2 = {10, 10}; 
    doIntersect(p1, q1, p2, q2)? cout << "Yes\n": cout << "No\n"; 
  
    p1 = {-5, -5}, q1 = {0, 0}; 
    p2 = {1, 1}, q2 = {10, 10}; 
    doIntersect(p1, q1, p2, q2)? cout << "Yes\n": cout << "No\n"; 
  
    return 0; 

输出: 

No
Yes
No

时间复杂度: O(1)

空间复杂度:O(1)

资料来源: 
http://www.dcs.gla.ac.uk/~pat/52233/slides/Geometry1x1.pdf   

《算法导论》第三版,作者:Clifford Stein、Thomas H. Cormen、Charles E. Leiserson、Ronald L. Rivest

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值