凸多边形(Convex Polygon)

        凸多边形是边为直边且不向内折叠的特殊形状。连接凸多边形角的所有线都位于形状内部。凸多边形的角始终指向外部。所有边和角都相等的正多边形始终是凸多边形。

        如果封闭形状具有曲面,则它不是凸多边形。在几何学中,多边形是具有直边和直角的平面二维形状。根据内部角度,多边形主要有两种类型:凸多边形和凹多边形。让我们进一步探索凸多边形,包括其属性、类型、公式和示例。

凸多边形定义
        闭合图形称为凸多边形,其所有内角均小于 180 °。因此,多边形的顶点将全部背对图形的内部,即朝外。没有边向内指向。三角形被认为是一个显著的凸多边形。四边形、五边形、六边形、平行四边形和其他凸多边形都是例子。 

凸多边形示例
        凸多边形在建筑和日常生活中都经常使用。一些常见的例子是停车标志,它有八条边和一个向外的曲线,以及许多现代建筑的窗户,它们也有凸面。道路上的人行横道和行人岛通常以凸多边形形式标记。餐盘和桌面具有光滑且向外凸出的形状,也可以作为凸多边形的例子。

凸多边形的类型
        可以使用两种类别对凸多边形进行分类。它们分别是:

                正凸多边形
                不规则凸多边形

正凸多边形
        正凸多边形是所有边相等且所有内角相等的多边形。正多边形只能是凸多边形。每个凹多边形都是不规则的。因此,虽然所有正多边形都是凸多边形,但并非所有凸多边形都是正多边形。

不规则凸多边形
        不规则多边形的边和角的长度各不相同。如果不规则多边形的所有角都小于 180 度,则为不规则凸多边形。不规则凸多边形的一个例子是不等边三角形。 

凸多边形的性质

凸多边形的一些重要性质如下:

        凸多边形的对角线位于多边形内部。

        凸多边形是连接每两点的线完全位于多边形内的多边形。

        凸多边形的所有内角都小于 180°。

        凹多边形是至少有一个角大于 180° 的多边形。

凸多边形的内角
        多边形内部的角度称为内角。多边形的内角数与边数相同。

凸多边形的外角
        多边形的外角是多边形边的延长线所得到的角度。多边形外角的总和为 360°。

凸多边形和凹多边形
        凸多边形和凹多边形之间的一些主要区别如下:

凸多边形

凹多边形

凸多边形的每个内角均小于180度。凹多边形的至少一个内角超过 180 度。
它包含连接凸形的任意两个顶点的线。它可能包含或不包含连接凹形的任意两个顶点的线。
凸形的整个轮廓朝外。也就是说,没有凹痕。至少有一部分凹曲线是向内指向的。也就是说,有一个凹痕。
规则凸多边形和不规则凸多边形均存在。正凹多边形从来不存在。

凸多边形公式
让我们看一些凸多边形公式

正凸多边形面积
正凸多边形面积计算公式如下:

如果凸多边形包含顶点 (x 1 , y 1 ), (x 2 , y 2 ), (x 3 , y 3 ), ... , (x n , y n ),则其面积计算公式为

面积 = ½ |(x 1 y 2 – x 2 y 1 ) + (x 2 y 3  – x 3 y 2 ) + 。 。 。 + (x n y 1  – x 1 y n )|

正凸多边形周长
封闭图形的周长是其外边之间的总距离。它是多边形边的总长度。正多边形的边在所有边上都相等。因此,通过反复相加,我们可以得到正多边形的周长。

正凸多边形的周长可以用以下公式计算:

周长 = nx 8

其中 n 是边数,8 是边长。

不规则凸多边形周长
它是多边形外接的全部距离。只需将多边形的所有边加在一起即可得到。

不规则凸多边形的周长可采用以下公式计算:

周长=各边之和

内角和
凸多边形的“n”边内角之和。内角之和可使用以下公式计算:

180° × (n-2)

例如:五边形有五条边。这意味着 n = 5

因此,结果是,

其内角总和为180° × (5-2) = 540°。

外角和
凸多边形的外角和等于 360°/n,其中“n”是多边形的边数。

例如:五边形有 5 条边。这意味着 n = 5

因此,结果是,

每个外角为360°/5 =72°。

相关阅读:

多边形
多边形的类型
多边形的面积

凸多边形求解示例

例 1:计算顶点为 (2, 5)、(6, 4)、(7, 3) 的多边形的面积。

解决方案:

给定:顶点为 (2, -5)、(6, 4) 和 (7, 3)

这里,(x 1, y 1) = (2, -5)

(x2 , y2 ) =(6,4)

(x3 , y3 ) =(7,3)

凸多边形面积的计算公式是

面积 = ½ | (x 1 y 2  – x 2 y 1 ) + (x 2 y 3  – x 3 y 2 ) + (x 3 y 1  – x 1 y 3 ) |

⇒ 面积 = ½ | (8 + 30) + (18 -28) + (-35-6) |

⇒ 面积 = ½ | -13|

⇒ 面积 = ½ |13|

因此,面积 = 13/2 平方单位

例 2: 求边长为 30 米的正十边形的周长。

解决方案:

十边形是具有 10 条边的多边形。

s = 30
n = 10
周长 = 10 × 30

⇒周长 = 300米

例 3:求五边形的外角为 2x°、5x°、x°、4x° 和 3x°。x 是多少?

解决方案:

任何凸多边形的外角和始终为 360°。

2x°+ 5x°+ x°+ 4x°+ 3x°= 360°

⇒ 15x = 360°

⇒ x = 360°/15

⇒x =24。

因此,角度为:

2x = 48°、5x = 120°、x = 24°、4x = 96° 和 3x = 72°

例 4:求五边形的内角分别为 2x°、5x°、x°、4x° 和 3x°。x 是多少?

解决方案:

我们知道五边形有 5 条边。因此内角为 (5-2) x 180° = 540°
2x°+ 5x° + x° + 4x° + 3x° = 540°

⇒ 15x° = 540°

⇒x = 540/15

⇒ x = 36°

参考连接:Convex Polygon: Definition, Properties, Formulas, and Examples 

### 如何在Halcon中创建或处理凸多边形 #### 创建凸多边形 为了在 Halcon 中创建一个凸多边形,可以利用 `gen_polygon_filled` 函数来定义一个多边形区域。如果目标是确保该多边形凸多边形,则需注意输入顶点顺序应遵循顺时针方向,并且不包含任何内凹角度[^1]。 ```cpp // 定义凸多边形的顶点坐标 double Rows[] = {10, 20, 30, 40}; double Cols[] = {10, 20, 20, 10}; // 使用 gen_polygon_filled 创建填充的多边形区域 gen_polygon_filled (Polygon, Rows, Cols); ``` 对于更复杂的操作,比如验证给定的一组点是否构成一个凸包,可采用 `smallest_rectangle1` 或者 `convex_hull` 操作符来进行辅助判断和转换[^2]。 #### 处理凸多边形 当涉及到对已有的凸多边形进行变换或其他几何运算时,Halcon 提供了一系列工具函数用于调整形状属性、计算面积周长等特性参数以及执行布尔逻辑组合(交集、并集)。例如: - 计算多边形质心位置可以通过调用 `area_center` 实现; - 获取边界框尺寸则适用 `smallest_rectangle1` 方法; - 对两个或多个多边形求取公共部分可用 `intersection` 命令完成。 ```cpp // 示例:获取多边形中心点 area_center(Polygon, Area, Row, Column); // 输出结果 disp_message(WindowHandle, "Center at (" + Double2Str(Column, 2) + ", " + Double2Str(Row, 2) + ")", 'window', 12, 12, 'black'); ``` 通过上述方法可以在 Halcon 环境下有效地构建与操控凸多边形对象,满足不同应用场景下的需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值