机器学习之线性回归的简单使用

1.下方例子是sklearn中的官方案例,其中仅使用到了10个特征元素中一个特征元素(可理解为x_1),故而其线性回归方程倒也简单,为:

 其具体推导这里就不做展开,其常规的套路如下:首先于回归方程中加上误差项,而误差项满足高斯分布,故而将回归方程带入高斯分布的公式中,之后求解似然函数,通过似然函数得到目标函数,然后求解目标函数极值,求解极值利用求偏导即可,得到求导后方程后令方程 = 0,然后解出 值即可。

2.关于线性回归方程的相关信息,具体可以去参考相关的机器学习的书籍,其中会有更为详实的介绍。

3.接下来以sklearn中这个小例子来了解如何使用该线性回归,这里仅使用了一个特征元素x,当然也可以使用多个特征进行训练,不过为了便于后面画图,故而这里仅使用了一个特征元素

import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score


diabetes_X, diabetes_y = datasets.load_diabetes(return_X_y=True)


# 这里只用到了一个特征值,可以理解该方程为 : y = theta*x_1
# diabetes_X = diabetes_X[:, np.newaxis, 2]
# diabetes_X = diabetes_X[:,2:3]
diabetes_X = diabetes_X[:,2:6]



diabetes_X = diabetes_X[:,0:1]


diabetes_X_train = diabetes_X[:-20]


diabetes_X_test = diabetes_X[-20:]



diabetes_y_train = diabetes_y[:-20]
diabetes_y_test = diabetes_y[-20:]

# 实例化线性回归的函数
regr = linear_model.LinearRegression()

# 传入训练的数据,求解各个theta值都会在这里完成
regr.fit(diabetes_X_train, diabetes_y_train)

# 传入测试数据,然后得到预测的y值,即通过上面的操作已经得到了一个成熟的方程 y = theta * x_1
# 现在的theta值已经通过训练得到了一个确定的值,故而可以使用预测函数来进行预测y值了
diabetes_y_pred = regr.predict(diabetes_X_test)


# 构建一个散点图,x轴为diabetes_X_test,y轴为diabetes_y_test
plt.scatter(diabetes_X_test, diabetes_y_test, color="black")

# 预测的值y与传入的x值形成的坐标,进而连成了一条线
plt.plot(diabetes_X_test, diabetes_y_pred, color="blue", linewidth=3)

plt.show()

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
线性回归机器学习中的一种基本算法,梯度下降法是线性回归中常用的优化算法。下面是线性回归梯度下降法的实现步骤: 1.读取数据集,包括自变量和因变量。 2.初始化相关参数,包括学习率、迭代次数、截距和斜率等。 3.定义计算代价函数,常用的代价函数是均方误差(MSE)。 4.梯度下降,通过不断迭代更新截距和斜率,使得代价函数最小化。 5.执行梯度下降算法,得到最优的截距和斜率。 下面是Python代码实现: ```python import numpy as np # 读取数据集 def load_data(file_path): data = np.loadtxt(file_path, delimiter=',') x_data = data[:, :-1] y_data = data[:, -1] return x_data, y_data # 初始化相关参数 def init_params(): b = 0 k = 0 learning_rate = 0.01 num_iterations = 1000 return b, k, learning_rate, num_iterations # 定义计算代价函数 def compute_cost(b, k, x_data, y_data): total_error = 0 for i in range(len(x_data)): total_error += (y_data[i] - (k * x_data[i] + b)) ** 2 cost = total_error / float(len(x_data)) return cost # 梯度下降 def gradient_descent(b, k, x_data, y_data, learning_rate, num_iterations): m = float(len(x_data)) for i in range(num_iterations): b_gradient = 0 k_gradient = 0 for j in range(len(x_data)): b_gradient += (1/m) * ((k * x_data[j] + b) - y_data[j]) k_gradient += (1/m) * ((k * x_data[j] + b) - y_data[j]) * x_data[j] b = b - (learning_rate * b_gradient) k = k - (learning_rate * k_gradient) return b, k # 执行梯度下降算法 def linear_regression(file_path): x_data, y_data = load_data(file_path) b, k, learning_rate, num_iterations = init_params() print("Starting parameters: b = {0}, k = {1}, cost = {2}".format(b, k, compute_cost(b, k, x_data, y_data))) b, k = gradient_descent(b, k, x_data, y_data, learning_rate, num_iterations) print("After {0} iterations: b = {1}, k = {2}, cost = {3}".format(num_iterations, b, k, compute_cost(b, k, x_data, y_data))) # 调用线性回归函数 linear_regression('data.csv') ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值