深度学习视频数据集(动作识别):UCF-101

UCF-101是来自YouTube的13320个动作视频数据集,包含101个类别,主要用于动作识别。数据集分为25个子集,涵盖人与物体交互、肢体动作、人与人交互、乐器演奏和体育运动五大类。每个类别有4-7个视频,总时长约27小时。为了防止过拟合,训练和测试时需要确保同一组的视频不混合。视频预处理需将其分解为图像序列,数据集提供了三种划分方案,常用于C3D等深度学习模型的训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

UCF-101

官网:https://www.crcv.ucf.edu/research/data-sets/ucf101/

网盘:链接:https://pan.baidu.com/s/1RsJuykWyUlQ4_c1TwqxR_Q
提取码:909g

官方解释

UCF101是一个现实动作视频的动作识别数据集,收集自YouTube,提供了来自101个动作类别的13320个视频。

该数据集是UCF50数据集的扩展,UCF50数据集有50个动作类别。

UCF101在动作方面提供了最大的多样性,并且在摄像机运动、对象外观和姿态、对象规模、视点、杂乱的背景、照明条件等方面有很大的变化。

101个动作类别中的视频被分成25组,每组可以包含一个动作的4-7个视频。同一组的视频可能有一些共同的特点,比如相似的背景,相似的观点等等。

包括5大类动作 :

  1. 人与物体交互
  2. 单纯的肢体动作
  3. 人与人交互
  4. 演奏乐器
  5. 体育运动

这些类别有:

化眼妆、涂唇膏、射箭、婴儿爬行、平衡木、乐队游行、棒球、打篮球、扣篮、卧推、骑自行车、台球、吹干头发、吹蜡烛、下蹲、保龄球、拳击、出气筒、蛙泳、刷牙、挺举、悬崖跳水、保龄球、板球、潜水、打鼓、击剑、曲棍球、体操、飞盘、爬泳、高尔夫挥杆、理发、扔链球、锤击、倒立俯卧撑…

注意:在训练和测试时,将属于同一组的视频分开是非常重要的。由于一组视频是由单个的长视频获得的,因此在训练和测试集中共享同一组的视频会获得较高的性能。</

内容概要:本文档聚焦于视频行为识别领域中两种主流深度学习算法——LSTM与3D CNN的对比研究。视频行为识别的目标在于使计算机能够解析视频中的人物动作,而视频本身作为一种包含时间序列特性的动态数据类型,其核心挑战在于高效地抽取和处理时空特征。针对这一问题,LSTM凭借其独特的门控机制解决了传统RNN存在的梯度问题,擅长捕捉帧间的光流特征;3D CNN则是在二维卷积基础上加入了时间维度,可以直接从视频片段中同时获取空间与时间信息。文档还提供了具体的复现思路,包括利用光流估计算法配合LSTM进行行为分类,以及构建3D CNN架构来处理原始视频片段,最终在UCF101数据集上验证这两种方法的效果并加以比较。; 适合人群:对计算机视觉深度学习尤其是视频行为识别方向感兴趣的科研人员或学生。; 使用场景及目标:①深入理解LSTM和3D CNN的工作原理及其在视频行为识别任务中的应用;②掌握基于UCF101数据集实现这两种模型的具体步骤和技术细节;③能够独立完成相关实验设计并评估模型性能。; 阅读建议:建议读者先熟悉基本的机器学习概念,特别是深度学习基础知识,再逐步深入了解LSTM和3D CNN的相关理论。在实践过程中,可以参考提供的复现思路,尝试搭建自己的模型,并结合实际案例进行测试与优化。
UCF101是一个广泛使用的视频动作识别数据集,其中包含101个动作类别,包括从常见的运动动作到日常生活中的各种活动。这个数据集的目的是为了促进动作识别算法的发展和评估。 UCF101数据集中的每个视频都是以RGB的格式存储的,即每个视频帧都有R(红色)、G(绿色)和B(蓝色)三个通道组成的图像。因此,如果你想要进行UCF101数据集中的rgb视频下载,你需要下载整个数据集,并将视频帧保存为RGB图像。 首先,你可以搜索UCF101数据集的官方网站或相关的研究论文,以找到可以下载UCF101数据集的链接或资源。通常,官方网站或研究论文会提供数据集的下载链接和详细的使用说明。 一旦你找到了可用的下载链接,你可以通过单击链接来下载数据集的压缩文件。请注意,UCF101数据集非常大,通常需要大量的存储空间来保存所有的视频帧。因此,在下载数据集之前,请确保你有足够的存储空间。 下载完成后,你可以使用相应的软件来解压缩数据集的压缩文件。解压缩后,你将得到包含所有视频帧的文件夹。每个视频帧都被保存为RGB图像,你可以通过访问这些图像来获取RGB视频。 总结来说,要下载UCF101数据集中的RGB视频,你需要找到可用的下载链接,下载数据集的压缩文件,解压缩文件并访问保存为RGB图像的视频帧。这将需要大量的存储空间和相关的软件来完成。希望这个回答对你有帮助!
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值