深度学习视频数据集(动作识别):UCF-101

UCF-101是来自YouTube的13320个动作视频数据集,包含101个类别,主要用于动作识别。数据集分为25个子集,涵盖人与物体交互、肢体动作、人与人交互、乐器演奏和体育运动五大类。每个类别有4-7个视频,总时长约27小时。为了防止过拟合,训练和测试时需要确保同一组的视频不混合。视频预处理需将其分解为图像序列,数据集提供了三种划分方案,常用于C3D等深度学习模型的训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

UCF-101

官网:https://www.crcv.ucf.edu/research/data-sets/ucf101/

网盘:链接:https://pan.baidu.com/s/1RsJuykWyUlQ4_c1TwqxR_Q
提取码:909g

官方解释

UCF101是一个现实动作视频的动作识别数据集,收集自YouTube,提供了来自101个动作类别的13320个视频。

该数据集是UCF50数据集的扩展,UCF50数据集有50个动作类别。

UCF101在动作方面提供了最大的多样性,并且在摄像机运动、对象外观和姿态、对象规模、视点、杂乱的背景、照明条件等方面有很大的变化。

101个动作类别中的视频被分成25组,每组可以包含一个动作的4-7个视频。同一组的视频可能有一些共同的特点,比如相似的背景,相似的观点等等。

包括5大类动作 :

  1. 人与物体交互
  2. 单纯的肢体动作
  3. 人与人交互
  4. 演奏乐器
  5. 体育运动

这些类别有:

化眼妆、涂唇膏、射箭、婴儿爬行、平衡木、乐队游行、棒球、打篮球、扣篮、卧推、骑自行车、台球、吹干头发、吹蜡烛、下蹲、保龄球、拳击、出气筒、蛙泳、刷牙、挺举、悬崖跳水、保龄球、板球、潜水、打鼓、击剑、曲棍球、体操、飞盘、爬泳、高尔夫挥杆、理发、扔链球、锤击、倒立俯卧撑…

注意:在训练和测试时,将属于同一组的视频分开是非常重要的。由于一组视频是由单个的长视频获得的,因此在训练和测试集中共享同一组的视频会获得较高的性能。</

UCF101是一个广泛使用的视频动作识别数据集,其中包含101个动作类别,包括从常见的运动动作到日常生活中的各种活动。这个数据集的目的是为了促进动作识别算法的发展和评估。 UCF101数据集中的每个视频都是以RGB的格式存储的,即每个视频帧都有R(红色)、G(绿色)和B(蓝色)三个通道组成的图像。因此,如果你想要进行UCF101数据集中的rgb视频下载,你需要下载整个数据集,并将视频帧保存为RGB图像。 首先,你可以搜索UCF101数据集的官方网站或相关的研究论文,以找到可以下载UCF101数据集的链接或资源。通常,官方网站或研究论文会提供数据集的下载链接和详细的使用说明。 一旦你找到了可用的下载链接,你可以通过单击链接来下载数据集的压缩文件。请注意,UCF101数据集非常大,通常需要大量的存储空间来保存所有的视频帧。因此,在下载数据集之前,请确保你有足够的存储空间。 下载完成后,你可以使用相应的软件来解压缩数据集的压缩文件。解压缩后,你将得到包含所有视频帧的文件夹。每个视频帧都被保存为RGB图像,你可以通过访问这些图像来获取RGB视频。 总结来说,要下载UCF101数据集中的RGB视频,你需要找到可用的下载链接,下载数据集的压缩文件,解压缩文件并访问保存为RGB图像的视频帧。这将需要大量的存储空间和相关的软件来完成。希望这个回答对你有帮助!
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值