行为识别(一):UCF101视频数据集预处理
1 数据集介绍
基于视频的行为识别常见的数据库有UCF101、HMDB-51、Something-Something V2、AVA v2.2、Kinetic-700等。其中UCF101的标记方式是针对一段视频做一个类别的标记,AVA v2.2的标记共包含五个部分,video_id(视频名称)、middle_Frame_timestam(关键帧位置)、person_box(视频中人物的边界框)、action_id(动作类别)、person_id(bbox中人物编号)。UCF101是分类的任务,而AVA v2.2针对的是检测的任务,更多对AVA v2.2数据集的详细解析可以点击这里。
1.1 UCF101
本文选用的行为识别数据集为UFC101。
UCF数据集包含两个压缩文件,UCF101.rar和UCF101TrainTestSplits-RecognitionTask.zip,前者将不同类别的视频存放于不同的文件夹下,后者存放UCF101数据集的3种训练集与测试集划分方式以及标签文件。其中testlist01.txt和trainlist01.txt对应第一种划分方式。
`-- ucfTrainTestlist
|-- classInd.txt
|-- testlist01.txt
|-- testlist02.txt
|-- testlist03.txt
|-- trainlist01.txt
|-- trainlist02.txt
`-- trainlist03.txt
1 directory, 7 files
- 内含13320 个短视频
- 视频来源:YouTube
- 视频类别:101 种
- 主要包括这5大类动作 :人和物体交互,只有肢体动作,人与人交互,玩音乐器材,各类运动
- 分辨率:320*240
2 UCF101预处理
2.1 划分train_set和test_set
目的:将UCF101划分为以下存储结构方式(使用trainlist01.txt和testlist01.txt进行划分)
.
`-- dataset
|-- test
| |-- class1
| | |-- 01.mp4
| | |-- 02.mp4
| | |-- 03.mp4
| | `-- 04.mp4
| |-- class2
| | |-- 01.mp4
| | |-- 02.mp4
| | |-- 03.mp4
| | `-- 04.mp4
| |-- class3
| | |-- 01.mp4
| | |-- 02.mp4
| | |-- 03.mp4
| | `-- 04.mp4
| `-- class4
| |-- 01.mp4
| |-- 02.mp4
| |-- 03.mp4
| `-- 04.mp4
`-- train
|-- class1
| |-- 01.mp4
| |-- 02.mp4
| |-- 03.mp4
| `-- 04.mp4
|-- class2
| |-- 01.mp4
| |-- 02.mp4
| |-- 03.mp4
| `-- 04.mp4
|-- class3
| |-- 01.mp4
| |-- 02.mp4
| |-- 03.mp4
| `-- 04.mp4
`-- class4
|-- 01.mp4
|-- 02.mp4
|-- 03.mp4
`-- 04.mp4
使用到的工具为shutil,环境为python,工具pip安装命令为
pip install pytest-shutil
python程序如下,程序的设计思想是先将testlist01中的文件移到“dataset/test/”路径下,再将剩下的文件夹重命名为“train”后移到dataset目录下