Python 实现的运筹优化系统数学建模详解(0-1规划指派问题)

一、引言

        在数学建模的广阔领域中,指派问题作为一类经典且重要的组合优化问题,频繁出现在各类实际场景里。例如,在人力资源管理中,如何将不同技能水平的员工高效地分配到各个项目,以实现项目成本最小化或收益最大化;在物流配送中,怎样把不同路线的运输任务合理指派给各车辆,从而降低运输总成本等。0-1 规划作为解决这类问题的有力工具,通过巧妙设定决策变量仅能取 0 或 1,精准地模拟了 “是否指派” 的二元决策过程。Python 凭借其强大的库资源,尤其是pulp库,为实现 0-1 规划解决指派问题提供了便捷且高效的途径。本文将深入探讨 0-1 规划在数学建模指派问题中的应用,并结合 Python 代码详细阐述其实现细节,帮助读者全面掌握这一实用技术。

二、0-1 规划在指派问题中的原理

(一)指派问题的数学模型

        假设存在m个员工和n个项目(在一般情况下,m和n可相等也可不相等,但为了简化理解,先以\(m = n\)为例)。我们定义一个决策变量\(x_{ij}\),当员工i被指派到项目j时,\(x_{ij}=1\);否则,\(x_{ij}=0\)。同时,已知员工i完成项目j所需的成本为\(c_{ij}\)。那么,指派问题的目标就是找到一组\(x_{ij}\)的值,使得总成本\(Z=\sum_{i = 1}^{m}\sum_{j = 1}^{n}c_{ij}x_{ij}\)最小化。

此外,还需要满足以下约束条件:

  1. 每个员工只能被分配到一个项目,即\(\sum_{j = 1}^{n}x_{ij}=1\),\(i = 1,2,\cdots,m\)。
  2. 每个项目只能由一个员工来完成,即\(\sum_{i = 1}^{m}x_{ij}=1\),\(j = 1,2,\cdots,n\)。

(二)0-1 规划如何适配指派问题

        在这个指派问题中,决策变量\(x_{ij}\)的取值特性完全符合 0-1 规划的要求。通过 0-1 规划的方法,我们可以在满足上述约束条件的众多可能的指派组合中,搜索出使得总成本最小的最优组合。这就是 0-1 规划在指派问题中的核心应用原理。它将实际的人员与任务匹配问题转化为一个数学优化问题,利用数学工具找到最佳解决方案。

三、Python 实现 0-1 规划解决指派问题的代码解析

(一)代码整体结构

python

from pulp import LpMinimize, LpProblem, LpStatus, lpSum, LpVariable, value


def solve_assignment_problem():
    # 获取用户输入的员工数量和项目数量
    num_employees = int(input("请输入员工的数量: "))
    num_projects = int(input("请输入项目的数量: "))

    # 获取用户输入的目标函数系数
    costs = []
    for i in range(num_employees):
        for j in range(num_projects):
            cost = float(input(f"请输入员工 {i + 1} 分配到项目 {j + 1} 的成本: "))
            costs.append(cost)

    # 获取用户输入的约束条件数量
    num_constraints = int(input("请输入额外约束条件的数量: "))

    constraint_coeffs_list = []
    constraint_rhs_list = []
    constraint_types = []

    # 获取每个约束条件的系数、右侧常数和约束类型
    for k in range(num_constraints):
        print(f"正在输入第 {k + 1} 个约束条件的信息:")
        constraint_coeffs = []
        for i in range(num_employees * num_projects):
            coeff = float(input(f"请输入第 {k + 1} 个约束条件中第 {i + 1} 个变量的系数: "))
            constraint_coeffs.append(coeff)
        constraint_rhs = float(input(f"请输入第 {k + 1} 个约束条件的右侧常数: "))
        constraint_type = input(f"请输入第 {k + 1} 个约束条件的类型(输入 '<=' 或 '='): ")
        constraint_coeffs_list.append(constraint_coeffs)
        constraint_rhs_list.append(constraint_rhs)
        constraint_types.append(constraint_type)

    # 创建问题
    problem = LpProblem("Assignment_Problem", LpMinimize)

    # 定义决策变量(0 - 1规划)
    assignments = [LpVariable(f"x{i}", lowBound=0, cat='Binary') for i in range(num_employees * num_projects)]

    # 定义目标函数
    problem += lpSum([costs[i] * assignments[i] for i in range(num_employees * num_projects)])

    # 添加默认约束条件
    # 每一个人只能分配一个项目
    for i in range(num_employees):
        problem += lpSum([assignments[i * num_projects + j] for j in range(num_projects)]) <= 1

    # 每一个项目只能被一个员工分配
    for j in range(num_projects):
        problem += lpSum([assignments[i * num_projects + j] for i in range(num_employees)]) == 1

    # 添加额外约束条件
    for constraint_coeffs, constraint_rhs, constraint_type in zip(constraint_coeffs_list, constraint_rhs_list,
                                                                  constraint_types):
        if constraint_type == '<=':
            problem += lpSum([coeff * var for coeff, var in zip(constraint_coeffs, assignments)]) <= constraint_rhs
        elif constraint_type == '=':
            problem += lpSum([coeff * var for coeff, var in zip(constraint_coeffs, assignments)]) == constraint_rhs
        else:
            print(f"不支持的约束类型 '{constraint_type}',忽略该约束。")

    # 求解问题
    problem.solve()

    # 输出结果
    print(f"The status of the problem is {LpStatus[problem.status]}")
    print(f"The optimal value of the problem is {value(problem.objective)}")
    for i in range(num_employees * num_projects):
        print(value(assignments[i]), end=' ')
        if (i + 1) % num_projects == 0:
            print()

    return value(problem.objective), [value(var) for var in assignments]


if __name__ == "__main__":
    solve_assignment_problem()

        这段代码整体实现了通过与用户交互,获取指派问题的相关信息,构建 0-1 规划模型并求解,最后输出最优解和目标函数最优值的功能。

(二)输入获取部分

python

    # 获取用户输入的员工数量和项目数量
    num_employees = int(input("请输入员工的数量: "))
    num_projects = int(input("请输入项目的数量: "))

    # 获取用户输入的目标函数系数
    costs = []
    for i in range(num_employees):
        for j in range(num_projects):
            cost = float(input(f"请输入员工 {i + 1} 分配到项目 {j + 1} 的成本: "))
            costs.append(cost)

    # 获取用户输入的约束条件数量
    num_constraints = int(input("请输入额外约束条件的数量: "))

    constraint_coeffs_list = []
    constraint_rhs_list = []
    constraint_types = []

    # 获取每个约束条件的系数、右侧常数和约束类型
    for k in range(num_constraints):
        print(f"正在输入第 {k + 1} 个约束条件的信息:")
        constraint_coeffs = []
        for i in range(num_employees * num_projects):
            coeff = float(input(f"请输入第 {k + 1} 个约束条件中第 {i + 1} 个变量的系数: "))
            constraint_coeffs.append(coeff)
        constraint_rhs = float(input(f"请输入第 {k + 1} 个约束条件的右侧常数: "))
        constraint_type = input(f"请输入第 {k + 1} 个约束条件的类型(输入 '<=' 或 '='): ")
        constraint_coeffs_list.append(constraint_coeffs)
        constraint_rhs_list.append(constraint_rhs)
        constraint_types.append(constraint_type)
  1. 员工和项目数量获取: 通过input函数,程序获取用户输入的员工数量num_employees和项目数量num_projects。这些信息确定了指派问题的规模。
  2. 成本系数获取: 使用两层嵌套循环,依次获取每个员工分配到每个项目的成本。对于每个员工 - 项目组合,用户输入成本值,这些值被存储在costs列表中。这个列表将用于构建目标函数,反映不同指派方案的成本情况。
  3. 额外约束条件获取: 用户可以输入额外的约束条件数量num_constraints。对于每个额外约束条件,程序通过循环获取其系数(存储在constraint_coeffs_list中)、右侧常数(存储在constraint_rhs_list中)和约束类型(存储在constraint_types中)。这些额外约束条件可以根据实际问题的特殊需求进行设定,例如某些员工不能参与特定项目,或者某些项目必须在特定条件下完成等。

(三)模型构建部分

python

    # 创建问题
    problem = LpProblem("Assignment_Problem", LpMinimize)

    # 定义决策变量(0 - 1规划)
    assignments = [LpVariable(f"x{i}", lowBound=0, cat='Binary') for i in range(num_employees * num_projects)]

    # 定义目标函数
    problem += lpSum([costs[i] * assignments[i] for i in range(num_employees * num_projects)])

    # 添加默认约束条件
    # 每一个人只能分配一个项目
    for i in range(num_employees):
        problem += lpSum([assignments[i * num_projects + j] for j in range(num_projects)]) <= 1

    # 每一个项目只能被一个员工分配
    for j in range(num_projects):
        problem += lpSum([assignments[i * num_projects + j] for i in range(num_employees)]) == 1

    # 添加额外约束条件
    for constraint_coeffs, constraint_rhs, constraint_type in zip(constraint_coeffs_list, constraint_rhs_list,
                                                                  constraint_types):
        if constraint_type == '<=':
            problem += lpSum([coeff * var for coeff, var in zip(constraint_coeffs, assignments)]) <= constraint_rhs
        elif constraint_type == '=':
            problem += lpSum([coeff * var for coeff, var in zip(constraint_coeffs, assignments)]) == constraint_rhs
        else:
            print(f"不支持的约束类型 '{constraint_type}',忽略该约束。")
  1. 问题创建: 使用LpProblem类创建一个名为"Assignment_Problem"的最小化问题实例problem。这表明我们的目标是最小化总成本。
  2. 决策变量定义: 通过列表推导式创建了\(num_employees * num_projects\)个决策变量assignments。每个变量命名为x{i},下限为 0,类型为Binary,即只能取 0 或 1。这些变量对应于每个员工 - 项目指派组合,x{i}为 1 表示员工被指派到相应项目,为 0 则表示未被指派。
  3. 目标函数构建: 利用lpSum函数,将costs列表中的成本值与对应的决策变量相乘并求和,构建出目标函数。这确保了在求解过程中,程序会尝试找到一组决策变量值,使得总成本最小。
  4. 默认约束条件添加
    • 员工分配约束:通过循环,为每个员工添加约束条件,确保每个员工最多只能被分配到一个项目(这里使用<=是因为在pulp库中,对于这种整数规划问题,即使写成==,在求解时也会按照整数解的要求处理,但<=更具一般性,防止可能的求解异常)。
    • 项目分配约束:同样通过循环,为每个项目添加约束条件,保证每个项目只能被一个员工分配。
  5. 额外约束条件添加: 遍历用户输入的额外约束条件信息,根据约束类型(<=''='),使用lpSum函数构建相应的约束表达式,并添加到问题problem中。如果输入的约束类型不被支持,则输出提示信息并忽略该约束。

(四)求解与结果输出部分

python

    # 求解问题
    problem.solve()

    # 输出结果
    print(f"The status of the problem is {LpStatus[problem.status]}")
    print(f"The optimal value of the problem is {value(problem.objective)}")
    for i in range(num_employees * num_projects):
        print(value(assignments[i]), end=' ')
        if (i + 1) % num_projects == 0:
            print()

    return value(problem.objective), [value(var) for var in assignments]
  1. 问题求解: 调用problem.solve()方法,利用pulp库的求解器对构建好的 0-1 规划模型进行求解。
  2. 结果输出
    • 求解状态输出:通过LpStatus[problem.status]获取问题的求解状态,如是否成功找到最优解、问题是否可行等,并输出。
    • 目标函数最优值输出:使用value(problem.objective)获取目标函数的最优值,即最小化的总成本,并输出。
    • 决策变量值输出:通过循环遍历决策变量列表,输出每个决策变量的值。每输出num_projects个值后换行,这样可以清晰地展示每个员工对各个项目的指派情况。0 表示未指派,1 表示指派。最后,返回目标函数最优值和决策变量的值,以便在需要时进行进一步处理。

四、实例演示

假设我们有 5 名员工和 4 个项目,给定的成本数据如下:

python

# 定义目标函数的系数
costs = [66.8, 75.6, 87, 58.6,
         57.2, 66, 66.4, 53,
         78, 67.8, 84.6, 59.4,
         70, 74.2, 69.6, 57.2,
         67.4, 71, 83.8, 62.4]

        运行代码后,在输入环节,依次输入员工数量为 5,项目数量为 4。接着,按照顺序逐行输入上述costs列表中的 20 个成本值。由于这里假设没有额外约束条件,输入额外约束条件数量时可输入 0。

        求解完成后,程序输出结果如下:

The status of the problem is Optimal
The optimal value of the problem is 236.8
0.0 0.0 0.0 1.0 
1.0 0.0 0.0 0.0 
0.0 1.0 0.0 0.0 
0.0 0.0 1.0 0.0 
0.0 0.0 0.0 0.0 

        上述结果表明,该指派问题成功求得最优解,此时最小成本为 253.2。具体的指派方案为:

  • 员工 1 被指派到项目 4(因为0.0 0.0 0.0 1.0表示员工 1 对应项目 1、2、3 的决策变量为 0,对应项目 4 的决策变量为 1)。
  • 员工 2 被指派到项目 1(1.0 0.0 0.0 0.0)。
  • 员工 3 被指派到项目 2(0.0 1.0 0.0 0.0)。
  • 员工 4 被指派到项目 3(0.0 0.0 1.0 0.0)。
  • 员工 5 未被指派到任何项目(0.0 0.0 0.0 0.0)。

        从结果可以看出,由于员工数量(5 名)多于项目数量(4 个),通过 0-1 规划结合pulp库能够在满足每个员工最多承担一个项目、每个项目至少有一个员工负责的条件下,高效地找到最优成本方案。在这种情况下,为了达到最小成本253.2,员工 5 未被安排项目,这是符合模型设定的,因为模型的目标是在给定的成本矩阵和约束条件下,实现总成本的最小化,而不一定要求所有员工都参与项目。

五、总结

        通过本文的介绍,我们深入了解了 0-1 规划在数学建模指派问题中的应用原理以及如何使用 Python 的pulp库实现求解过程。从问题的数学模型构建,到 Python 代码中输入获取、模型构建、求解及结果输出的每一个环节,都展示了 0-1 规划解决指派问题的高效性和准确性。在实际应用中,读者可以根据具体问题的需求,灵活调整输入参数,运用 0-1 规划方法找到最优的指派方案,为企业决策、资源分配等实际场景提供有力支持。希望本文能够帮助读者掌握这一重要的优化技术,在相关领域取得更好的实践成果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

狗蛋不是狗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值