在日常生活中,我们经常会遇到需要寻找最短路径的场景,比如导航软件为我们规划从家到公司的最佳路线。但有时候,我们可能不满足于只有一条路线,而是希望知道第二短、第三短的路线,以便根据实时交通情况或个人偏好做出更灵活的选择。这就是K 最短路径问题,而 Yen's 算法正是解决这一问题的经典方法。
一、Yen's 算法的核心思想:步步为营,逐层扩展
传统最短路径算法的局限性
Dijkstra 算法和 A * 算法等传统最短路径算法只能找到从起点到终点的一条最短路径。当我们需要寻找多条不同的路径时,这些算法就显得力不从心了。
Yen's 算法的创新点
Yen's 算法由美国计算机科学家金芳容(James Yen)于 1971 年提出,它通过一种迭代的方式,逐步生成从起点到终点的第 1 短、第 2 短、...、第 K 短路径。其核心思想可以概括为:
- 基于 Dijkstra 算法:首先使用 Dijkstra 算法找到第一条最短路径
- 生成候选路径:通过依次移除已找到路径上的边,在剩余的图中寻找替代路径
- 筛选最优候选:从所有候选路径中选择最短的一条作为下一条最短路径
- 迭代重复:重复步骤 2 和 3,直到找到 K 条不同的路径
这种方法巧妙地利用了已有的最短路径信息,避免了重复计算,从而高效地生成多条不同的路径。
二、技术原理:从单一路径到多条路径
1. 算法流程详解
1.1 初始化
使用 Dijkstra 算法找到从起点到终点的最短路径,记为 P1。将 P1 加入结果集,并将其成本(路径长度)加入优先队列。
1.2 迭代生成候选路径
对于每条已找到的路径 Pi(i 从 1 到 K-1),依次移除路径 Pi 上的每条边,形成多个 "子图"。在每个子图中,使用 Dijkstra 算法找到从起点到被移除边的终点的最短路径,并与被移除边之后的路径片段组合,形成候选路径。
1.3 筛选最优候选
从所有候选路径中选择成本最小且未被选中的路径,作为下一条最短路径 Pi+1。将其加入结果集,并将其成本加入优先队列。
1.4 重复迭代
重复步骤 2 和 3,直到找到 K 条不同的路径或没有更多候选路径为止。
2. 时间复杂度分析
- 单次 Dijkstra 算法:时间复杂度为 O (E + V log V),其中 E 为边数,V 为顶点数
- 生成 K 条路径:每次生成新路径需要移除每条边并重新计算,时间复杂度为 O (K * E * (E + V log V))
3. 空间复杂度分析
- 存储路径信息:O (K * V)
- 优先队列和其他辅助结构:O (E + V)
三、Java 实现示例:Yen's 算法的基本实现
下面是一个简化版的 Yen's 算法实现,展示了其核心逻辑:
import java.util.*;
public class YensKShortestPaths {
private static class Edge {
int to;
int weight;
public Edge(int to, int weight) {
this.to = to;
this.weight = weight;
}
}
private static class Path implements Comparable<Path> {
List<Integer> n