高等数学基础

高等数学预备知识

一、函数的概念与特性

1.函数的定义

在数集D中,给定一个数x,按照一定的法则f,有唯一的数y与之对应,则称y为x的函数。x和y的关系可以是一对一,可以是多对一,但不能是一对多。

x称为自变量,y称为因变量,D称为定义域,y的取值范围称为值域

2.反函数的定义

对于原函数(直接函数)y=f(x),定义域为D,值域为R,在R中给定一个数y,在D中就有唯一的x与之对应,即有函数x=φ(y)。该函数就称为y=f(x)的反函数。一般记作x=f^{-1}(y)

2.1 反函数的充分条件

严格单调函数必有反函数。有反函数的未必是单调函数。

y=f(x)与x=f^{-1}(y)在坐标系上是同一图形,只有y=f^{-1}(x)与y=f(x)关于y=x直线对称

3.复合函数的定义

y=f[g(x)]。

3.1 复合函数的求导

由外而内依次求导

4.函数的4种特性

4.1 有界性

有界性的讨论必须建立在数集I上

函数y=f(x)的定义域为D,给定一个数集I,I属于D,在I上对于任意的x都有

\left | f(x) \right |<=M  。则称y=f(x)在I上有界。M是一个正数

无界性的证明:在区间I内或者区间端点上的函数值的极限值无穷大

4.2 单调性

单调性的证明:定义法,求导

4.3 奇偶性

定义域关于原点对称。如果f(-x)=f(x),则y=f(x)是偶函数。如果f(-x)=-f(x),则称y=f(x)是奇函数。

奇函数的图像关于原点对称,偶函数的图像关于y轴对称。

定义域为对称区间上的任意函数f(x)均可写成“u(x)+v(x)”。其中奇函数u(x)=[f(x)-f(-x)]/2

偶函数v(x)=[f(x)+f(-x)]/2

注:

“神秘的数字0”:构造拉格朗日中值定理

“神秘的数字1”:构造不等式

4.3.1 对称性

关于x轴对称:x不变,y取相反数

关于y轴对称:y不变,x取相反数

关于原点对称:x,y都取相反数

4.4 周期性

如果函数以T为周期,则f(x)=f(x+T)

二、函数的图像

1.直角坐标系

心形线(外摆线)

星形线(内摆线)

平摆线

1.1 基本初等函数与初等函数

基本初等函数:常函数、对数函数、幂函数、指数函数、三角函数

初等函数:由基本初等函数经过有限次的四则运算构成

1.2 分段函数

取整函数、绝对值函数、符号函数

1.3 图像变换

翻折变换:y=\left | f(x) \right |     图像“保上去下下翻上”

y=f(\left | x \right |)     图像“保右去左右翻左”

伸缩变换:y=k*f(x)

如果k>1,则新图像的纵坐标扩大至原来的k倍,如果k<1,则新图像的纵坐标缩小至原来的1/k

y=f(k*x)

如果k>1,新图像的横坐标缩小至原来的1/k,如果k<1,新图像的横坐标扩大到原来的1/k倍。

2.极坐标系

g=(ρ,θ)

2.1 描点法画图

2.2 用直角系观点画极坐标系的图像

先按照直角坐标系的形式画出ρ-θ图像,再根据ρ-θ图像画图

3.参数法

三、常用基础知识

1.数列

数列的项:a_1{},a_2{}...,a_n{}

数列的通项:a_n{}

等差数列通项公式:a_n{}=a_1{}+nd

等差数列求和公式:s_n{}=

等比数列通项公式:b_n{}=b_1{}*q^{n-1}

等比数列求和公式:s_n{}=

2.三角函数

奇变偶不变,符号看象限

3.指数运算法则

同底数幂相乘,底数不变,指数相加

4.对数运算法则

真数相乘,对数相加

真数相除,对数相减

换底公式

5.一元二次方程

2根之和,2根之积,求根公式

6.因式分解公式

7.阶乘与双阶乘

8.常用不等式

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值