高等数学预备知识
一、函数的概念与特性
1.函数的定义
在数集D中,给定一个数x,按照一定的法则f,有唯一的数y与之对应,则称y为x的函数。x和y的关系可以是一对一,可以是多对一,但不能是一对多。
x称为自变量,y称为因变量,D称为定义域,y的取值范围称为值域。
2.反函数的定义
对于原函数(直接函数)y=f(x),定义域为D,值域为R,在R中给定一个数y,在D中就有唯一的x与之对应,即有函数x=φ(y)。该函数就称为y=f(x)的反函数。一般记作x=(y)
2.1 反函数的充分条件
严格单调函数必有反函数。有反函数的未必是单调函数。
y=f(x)与x=(y)在坐标系上是同一图形,只有y=(x)与y=f(x)关于y=x直线对称
3.复合函数的定义
y=f[g(x)]。
3.1 复合函数的求导
由外而内依次求导
4.函数的4种特性
4.1 有界性
有界性的讨论必须建立在数集I上
函数y=f(x)的定义域为D,给定一个数集I,I属于D,在I上对于任意的x都有
<=M 。则称y=f(x)在I上有界。M是一个正数
无界性的证明:在区间I内或者区间端点上的函数值的极限值无穷大
4.2 单调性
单调性的证明:定义法,求导
4.3 奇偶性
定义域关于原点对称。如果f(-x)=f(x),则y=f(x)是偶函数。如果f(-x)=-f(x),则称y=f(x)是奇函数。
奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
定义域为对称区间上的任意函数f(x)均可写成“u(x)+v(x)”。其中奇函数u(x)=[f(x)-f(-x)]/2
偶函数v(x)=[f(x)+f(-x)]/2
注:
“神秘的数字0”:构造拉格朗日中值定理
“神秘的数字1”:构造不等式
4.3.1 对称性
关于x轴对称:x不变,y取相反数
关于y轴对称:y不变,x取相反数
关于原点对称:x,y都取相反数
4.4 周期性
如果函数以T为周期,则f(x)=f(x+T)
二、函数的图像
1.直角坐标系
心形线(外摆线)
星形线(内摆线)
平摆线
1.1 基本初等函数与初等函数
基本初等函数:常函数、对数函数、幂函数、指数函数、三角函数
初等函数:由基本初等函数经过有限次的四则运算构成
1.2 分段函数
取整函数、绝对值函数、符号函数
1.3 图像变换
翻折变换:y= 图像“保上去下下翻上”
y=f() 图像“保右去左右翻左”
伸缩变换:y=k*f(x)
如果k>1,则新图像的纵坐标扩大至原来的k倍,如果k<1,则新图像的纵坐标缩小至原来的1/k
y=f(k*x)
如果k>1,新图像的横坐标缩小至原来的1/k,如果k<1,新图像的横坐标扩大到原来的1/k倍。
2.极坐标系
g=(ρ,θ)
2.1 描点法画图
2.2 用直角系观点画极坐标系的图像
先按照直角坐标系的形式画出ρ-θ图像,再根据ρ-θ图像画图
3.参数法
三、常用基础知识
1.数列
数列的项:
数列的通项:
等差数列通项公式:=+nd
等差数列求和公式:=
等比数列通项公式:=*
等比数列求和公式:=
2.三角函数
奇变偶不变,符号看象限
3.指数运算法则
同底数幂相乘,底数不变,指数相加
4.对数运算法则
真数相乘,对数相加
真数相除,对数相减
换底公式
5.一元二次方程
2根之和,2根之积,求根公式
6.因式分解公式
7.阶乘与双阶乘
8.常用不等式