1.模型简介
季节加法模型是指序列中季节效应和其他效应之间是加法关系,可以表示为:
这时,各种效应信息的提取都非常容易。通常简单的周期步长差分即可将序列中的季节信息提取完毕,提取季节信息和趋势信息之后的残差序列就是一个平稳序列,可以用ARMA模型进行拟合。
所以简单季节模型实际上就是通过趋势差分、季节差分将序列将序列转化为平稳序列,再对其进行拟合。它的模型结构通常如下:
式中
2.建模过程
(1)画出时间序列时序图,判断其是否含有季节效应。
(2)对时间序列做d阶差分和周期步长k步差分,以消除其季节效应和趋势效应。
(3)将上述差分序列拟合ARMA模型
(4)对其参数进行显著性检验
(5)对未来值进行预测,并画出其预测图。
3.建模
利用1962年到1991年德国工人季度失业率序列进行建模分析
(1)画出时序图
library(tseries)
library(zoo)
library(forecast)
a=read.