ResNeXt算法详解(resnet提升篇)

转自:https://blog.csdn.net/u014380165/article/details/71667916

论文:Aggregated Residual Transformations for Deep Neural Networks

这是一篇发表在2017CVPR上的论文,介绍了ResNet网络的升级版:ResNeXt。下面介绍我看这篇论文时候做的笔记,和大家一起分享该模型。

作者提出 ResNeXt 的主要原因在于:传统的要提高模型的准确率,都是加深或加宽网络,但是随着超参数数量的增加(比如channels数,filter size等等),网络设计的难度和计算开销也会增加。因此本文提出的 ResNeXt 结构可以在不增加参数复杂度的前提下提高准确率,同时还减少了超参数的数量(得益于子模块的拓扑结构一样,后面会讲)。

作者在论文中首先提到VGG,VGG主要采用堆叠网络来实现,之前的 ResNet 也借用了这样的思想。然后提到 Inception 系列网络,简单讲就是 split-transform-merge 的策略,但是 Inception 系列网络有个问题:网络的超参数设定的针对性比较强,当应用在别的数据集上时需要修改许多参数,因此可扩展性一般。
于是重点来了,作者在这篇论文中提出网络 ResNeXt,同时采用 VGG 堆叠的思想和 Inception 的 split-transform-merge 思想,但是可扩展性比较强,可以认为是在增加准确率的同时基本不改变或降低模型的复杂度。这里提到一个名词cardinality,原文的解释是the size of the set of transformations,如下图 Fig1 右边是 cardinality=32 的样子,这里注意每个被聚合的拓扑结构都是一样的(这也是和 Inception 的差别,减轻设计负担)


附上原文比较核心的一句话,点明了增加 cardinality 比增加深度和宽度更有效,这句话的实验结果在后面有展示:


当然还有一些数据证明 ResNeXt 网络的优越性,例如原文中的这句话:In particular, a 101-layer ResNeXt is able to achieve better accuracy than ResNet-200 but has only 50% complexity.

Table1 列举了 ResNet-50 和 ResNeXt-50 的内部结构,另外最后两行说明二者之间的参数复杂度差别不大。


接下来作者要开始讲本文提出的新的 block, 举全连接层(Inner product)的例子来讲,我们知道全连接层的就是以下这个公式:


再配上这个图就更容易理解其splitting,transforming和aggregating的过程。

然后作者的网络其实就是将其中的 w i x i 替换成更一般的函数,这里用了一个很形象的词:Network in Neuron,式子如下:


其中C就是 cardinality,Ti有相同的拓扑结构(本文中就是三个卷积层的堆叠)。

然后看看fig 3。这里作者展示了三种相同的 ResNeXt blocks。fig3.a 就是前面所说的aggregated residual transformations。 fig3.b 则采用两层卷积后 concatenate,再卷积,有点类似 Inception-ResNet,只不过这里的 paths 都是相同的拓扑结构。fig 3.c采用的是grouped convolutions,这个 group 参数就是 caffe 的 convolusion 层的 group 参数,用来限制本层卷积核和输入 channels 的卷积,最早应该是 AlexNet 上使用,可以减少计算量。这里 fig 3.c 采用32个 group,每个 group 的输入输出 channels 都是4,最后把channels合并。这张图的 fig3.c 和 fig1 的左边图很像,差别在于fig3.c的中间 filter 数量(此处为128,而fig 1中为64)更多。作者在文中明确说明这三种结构是严格等价的,并且用这三个结构做出来的结果一模一样,在本文中展示的是 fig3.c 的结果,因为 fig3.c 的结构比较简洁而且速度更快。


这个表2主要列举了一些参数,来说明 fig1 的左右两个结构的参数复杂度差不多。第二行的d表示每个path的中间channels数量,最后一行则表示整个block的宽度,是第一行C和第二行d的乘积。


在实验中作者说明ResNeXt和ResNet-50/101的区别仅仅在于其中的block,其他都不变。贴一下作者的实验结果:相同层数的ResNet和ResNeXt的对比:(32*4d表示32个paths,每个path的宽度为4,如fig3)。实验结果表明ResNeXt和ResNet的参数复杂度差不多,但是其训练误差和测试误差都降低了。


另一个实验结果的表格,主要说明增加Cardinality和增加深度或宽度的区别,增加宽度就是简单地增加filter channels。第一个是基准模型,增加深度和宽度的分别是第三和第四个,可以看到误差分别降低了0.3%和0.7%。但是第五个加倍了Cardinality,则降低了1.3%,第六个Cardinality加到64,则降低了1.6%。显然增加Cardianlity比增加深度或宽度更有效。


接下来这个表一方面证明了residual connection的有效性,也证明了aggregated transformations的有效性,控制变量的证明方式,比较好理解。


因此全文看下来,作者的核心创新点就在于提出了 aggregrated transformations,用一种平行堆叠相同拓扑结构的blocks代替原来 ResNet 的三层卷积的block,在不明显增加参数量级的情况下提升了模型的准确率,同时由于拓扑结构相同,超参数也减少了,便于模型移植另外该算法目前只有Torch版本。
  • 10
    点赞
  • 62
    收藏
    觉得还不错? 一键收藏
  • 7
    评论
在PyTorch中使用贝叶斯优化算法来调整超参数并加入ResNet模型,可以通过以下步骤实现: 1. 首先,确保已经安装了Ax库。Ax是一个用于优化参数的Python库,可以在PyTorch中使用贝叶斯优化算法。 2. 导入所需的库和模块。首先导入Ax库,然后导入ResNet模型和其他必要的库。 3. 定义要优化的超参数空间。使用Ax库的ParameterType模块定义超参数空间,并指定超参数的类型和范围。例如,可以定义学习率、批量大小和权重衰减等超参数。 4. 创建要优化的目标函数。创建一个函数,该函数接收超参数作为输入,并返回模型在验证集上的性能度量值,例如准确率或损失值。 5. 初始化贝叶斯优化器。使用Ax库的BOAlgorithm模块初始化贝叶斯优化器,并将超参数空间和目标函数传递给该优化器。 6. 运行贝叶斯优化。使用贝叶斯优化器的run_trial方法进行一定次数的迭代优化。在每次迭代中,贝叶斯优化器会根据之前的评估结果生成新的超参数组合,并将其传递给目标函数进行评估。 7. 获取最优超参数组合。贝叶斯优化完成后,可以使用Ax库的get_best_parameters方法获取最佳超参数组合。 8. 创建ResNet模型。使用最佳超参数组合初始化ResNet模型。 9. 训练和评估模型。使用训练数据集进行模型训练,并使用测试数据集评估模型的性能。 以下是一个示例代码,展示了如何在PyTorch中使用贝叶斯优化算法加入ResNet模型: ```python import torch import torch.optim as optim import torchvision from torchvision import transforms from ax import optimize # Step 2: Import ResNet model and other necessary libraries # Step 3: Define the hyperparameter search space # Step 4: Define the objective function def objective(hyperparameters): # Step 5: Initialize ResNet model with hyperparameters # Step 6: Train and evaluate the model return accuracy # Step 7: Initialize the Bayesian optimization algorithm # Step 8: Run the Bayesian optimization # Step 9: Get the best hyperparameters # Step 10: Create the ResNet model with the best hyperparameters # Step 11: Train and evaluate the model with the best hyperparameters ``` 请注意,这只是一个示例代码框架,具体的实现可能会根据需求和具体的ResNet模型有所不同。您需要根据您的数据集、任务和模型结构进行适当的调整和修改。您还需要根据Ax库的文档和指南了解更多关于如何在PyTorch中使用贝叶斯优化的详细信息。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [pytorch贝叶斯网络_使用贝叶斯优化快速调试pytorch中的超参数的快速教程](https://blog.csdn.net/weixin_26748251/article/details/109123364)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值