R语言实现聚类分析

本文详细介绍了使用R语言进行聚类分析的几种常见方法,包括K-means、K-中心(K-Medoids)、系谱聚类、密度聚类和期望最大化(EM)聚类,并通过实例展示了如何应用这些算法,以及如何确定最优的聚类参数。
摘要由CSDN通过智能技术生成

K-均值聚类(K-Means   十大经典算法

l  K-中心点聚类(K-Medoids)

l  密度聚类(DBSCAN)

l  系谱聚类(HC)

期望最大化聚类(EM   十大经典算法

 

聚类算法

软件包

主要函数

K-means

stats

kmeans()

K-Medoids

cluster

pam()

系谱聚类(HC)

stats

hclust(), cutree(), rect.hclust()

密度聚类(DBSCAN)

fpc

dbscan()

期望最大化聚类(EM)

mclust

Mclust(), clustBIC(), mclust2Dplot(), densityMclust()

 

 

K-means

countries =read.table("birth.txt",head=F)

#K-均值(K-means)聚类   kmeans()  packages: stats

library(stats)

fit_km1 =kmeans(countries[,-1],center=3)

print(fit_km1)

K-means clustering with 3 clusters of sizes22, 20, 26

Cluster means:

    birth     death

1 17.53636 9.918182

2 25.01500 7.890000

3 42.57692 12.703846

 

Clustering vector:

ALGERIA        CONGO     EGYPT         GHANA   IVORY-COAST       MALAGASY

 3              3              3              3              3              3

MOROCCO      TUNISIA     CAMBODIA      CEYLON        CHINA         TAIWAN

3              3              3              3              3              3

HONG-KONG       INDIA    INDONESIA       IRAQ       JAPAN         JORDAN

  2             1              2              2              1              3

KOREA      MALAYSIA     MONGOLIA  PHILLLIPINES          SYRIA       THAILAND

1              2              3              2             2              3

VIETNAM   CANADA    COSTA-RICA    DOMINICAN-R    GUATEMALA       HONDURAS

   2             2              3              2              3              3

MEXICO   NICARAGUA     PANAMA   UNITED-STATES      ARGENTINA        BOLIVIA

3              3              3              2              2              1

BRAZIL       CHILE      COLOMBIA 

评论 36
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值