# 加载MNIST数据
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
import tensorflow as tf
sess = tf.InteractiveSession()
# 权重在初始化时应该加入少量的噪声来打破对称性以及避免0梯度
# truncated_normal:产生正态分布的随机数
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
# 由于我们使用的是ReLU神经元,用一个较小的正数来初始化偏置项,以避免神经元节点输出恒为0的问题(dead neurons)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# 卷积使用1步长(stride size),0边距(padding size)的1*1模板,保证输出和输入是同一个大小
# strides要求strides[0]=strides[3]=1,strides[1],strides[2]决定卷积核在输入图像in_hight,in_width方向的滑动步长,这里分别是1,1
# padding采用'SAME',输出大小等于输入大小除以步长向上取整,s是步长大小,所以stride步长是1的时候,卷积前后图像大小不变
def conv2d(x, W):
return tf.nn.conv2d(x, W, strid
MNIST进阶(卷积神经网络) 超详细代码注释
最新推荐文章于 2023-01-04 15:23:19 发布
本文深入探讨了使用卷积神经网络(CNN)对MNIST手写数字识别的实现,提供了详尽的代码注释,最终在测试集上实现了约99.2%的准确率。
摘要由CSDN通过智能技术生成