看了剑指offer发现一个问题有好多种思路去解决,之前自己考虑的都太普遍性,应当多样化的来思考问题
最深体会:写出实现功能的代码,和写出优异的代码是两回事!
1.链表的倒叙打印
(1)是否可以改变链表结构,可以改变就改变以后打印
(2)不允许改变链表结构可以直接使用循环,但是时间复杂度会是O(n)
(3)使用栈来存储,那么就会简单很多,只需要O(n)的时间复杂度
(4)由递归和循环的关系不难想出其实递归也可以解决该问题
用栈解决的方案
void List::resStaShow()
{
std::stack<Node*> s;
int len = this->Getlength();
Node* tmp = plist.next;
for (int i = 0; i < len; ++i)
{
s.push(tmp);
tmp = tmp->next;
}
while (!s.empty())
{
tmp = s.top();
printf("%d \n", tmp->date);
s.pop();
}
}
2.重建二叉树
输入二叉树的前序遍历和中序遍历的,请重建出该二叉树。
12473568
47215386
代码如下,输出函数顺序是前序
本题重点
掌握递归思想,熟悉前序和中序关系
注意
我的代码只实现了两字符顺序匹配的情况,那么不匹配的时候应当如何呢?
应该加一个判断函数,判断这两个是否是合适的字符串
如果说根节点是NULL呢?
如果说是特殊的二叉树呢?
BinaryTreeNode* rebulit(int str1[], int str2[], int length)
{
if (length == 0)
{
return NULL;
}
BinaryTreeNode* p = (BinaryTreeNode*)malloc(sizeof(BinaryTreeNode));
p->m_nValue = str1[0];
p->m_pLeft = NULL;
p->m_pRight = NULL;
if (length == 1)
{
return p;
}
int i = 0;
for (i; i < length; ++i)//i=0
{
if (str2[i] == str1[0])
{
break;
}
}
p->m_pLeft = rebulit(&str1[1], str2, i);
if (i + 1 < length)
{
p->m_pRight = rebulit(&str1[ i + 1], &str2[i + 1], length - i - 1);
}
else
{
p->m_pRight = NULL;
}
return p;
}
void rebuiltTree(BinaryTreeNode **root, int str1[], int str2[], int length)
{
*root = (BinaryTreeNode*)malloc(sizeof(BinaryTreeNode));
(*root)->m_pLeft = NULL;
(*root)->m_pRight = NULL;
BinaryTreeNode* p = (BinaryTreeNode*)malloc(sizeof(BinaryTreeNode));
p->m_nValue = str1[0];
p->m_pLeft = NULL;
p->m_pRight = NULL;
(*root)->m_pLeft = p;//第一个结点放到根节点的左边
int i = 0;
for (i; i < length; ++i)//3
{
if (str2[i] == str1[0])
{
break;
}
}
p->m_pLeft = rebulit(&str1[1], str2, i);
if (i + 1 < length)
{
p->m_pRight = rebulit(&str1[ i + 1], &str2[ i + 1], length - i - 1);
}
}
void Show(BinaryTreeNode *first)
{
if (first == NULL)
{
return;
}
printf("%d ", first->m_nValue);
Show(first->m_pLeft);
Show(first->m_pRight);
}
3.两个栈实现队列(这里用的是C++懒得写栈)
#include <iostream>
#include <stack>
using namespace std;
class Queue
{
public:
void push(int data)
{
p1.push(data);
}
int front()//这个函数想要加判断的,但是加的话必须返回一个值,所以就先暂定-1吧,因为我试了下系统的他貌似也是直接报错,让运行错误
{
if (p1.empty())
{
printf("队列为空无法提取\n");
return -1;
}
change(&p1, &p2);
int tmp = p2.top();
change(&p2, &p1);//为了可以持续使用变换完了以后还得变回来
return tmp;
}
void pop()//注意删除完了的判断
{
if (p1.empty())
{
printf("队列为空无法删除\n");
return;
}
change(&p1, &p2);
p2.pop();
change(&p2, &p1);
}
private:
stack<int> p1;
stack<int> p2;
void change(stack<int> *p1, stack<int> *p2)//把p1的值完全放到p2
{
int tmp;
while (!(*p1).empty())
{
tmp = (*p1).top();
(*p2).push(tmp);
(*p1).pop();
}
}
};
int main()
{
Queue q;
for (int i = 0; i < 10; ++i)
{
q.push(i);
}
for (int i = 0; i < 10; ++i)
{
cout << q.front() << endl;
q.pop();
}
return 0;
}
相应的两个队列实现一个栈的思想其实是一样的,先进先出换成后进先出罢了。