【面试】--【数据结构】

 

数组

  在Java中,数组是用来存放同一种数据类型的集合,注意只能存放同一种数据类型(Object类型数组除外)。

①、数组的声明

//声明数组1,声明一个长度为3,只能存放int类型的数据

int [] myArray = new int[3];

//声明数组2,声明一个数组元素为 1,2,3的int类型数组

int [] myArray2 = {1,2,3};

②、访问数组元素以及给数组元素赋值

  数组是存在下标索引的,通过下标可以获取指定位置的元素,数组小标是从0开始的,也就是说下标0对应的就是数组中第1个元素,可以很方便的对数组中的元素进行存取操作。

  前面数组的声明第二种方式,我们在声明数组的同时,也进行了初始化赋值。

//声明数组,声明一个长度为3,只能存放int类型的数据

int [] myArray = new int[3];

//给myArray第一个元素赋值1

myArray[0] = 1;

//访问myArray的第一个元素

System.out.println(myArray[0]);

  上面的myArray 数组,我们只能赋值三个元素,也就是下标从0到2,如果你访问 myArray[3] ,那么会报数组下标越界异常。

③、数组遍历

数组有个length 属性,是记录数组的长度的,我们可以利用length属性来遍历数组。

//声明数组2,声明一个数组元素为 1,2,3的int类型数组

int [] myArray2 = {1,2,3};

for(int i = 0 ; i < myArray2.length ; i++){

    System.out.println(myArray2[i]);

}的局限性

  通过上面的代码,我们发现数组是能完成一个数据结构所有的功能的,而且实现起来也不难,那数据既然能完成所有的工作,我们实际应用中为啥不用它来进行所有的数据存储呢?那肯定是有原因呢。

  数组的局限性分析:

①、插入快,对于无序数组,上面我们实现的数组就是无序的,即元素没有按照从大到小或者某个特定的顺序排列,只是按照插入的顺序排列。无序数组增加一个元素很简单,只需要在数组末尾添加元素即可,但是有序数组却不一定了,它需要在指定的位置插入。

②、查找慢,当然如果根据下标来查找是很快的。但是通常我们都是根据元素值来查找,给定一个元素值,对于无序数组,我们需要从数组第一个元素开始遍历,直到找到那个元素。有序数组通过特定的算法查找的速度会比无需数组快,后面我们会讲各种排序算法。

③、删除慢,根据元素值删除,我们要先找到该元素所处的位置,然后将元素后面的值整体向前面移动一个位置。也需要比较多的时间。

④、数组一旦创建后,大小就固定了,不能动态扩展数组的元素个数。如果初始化你给一个很大的数组大小,那会白白浪费内存空间,如果给小了,后面数据个数增加了又添加不进去了。

  很显然,数组虽然插入快,但是查找和删除都比较慢,而且扩展性差,所以我们一般不会用数组来存储数据,那有没有什么数据结构插入、查找、删除都很快,而且还能动态扩展存储个数大小呢,答案是有的,但是这是建立在很复杂的算法基础上,后面我们也会详细讲解。

(英语:stack)又称为堆栈堆叠,栈作为一种数据结构,是一种只能在一端进行插入和删除操作的特殊线性表。它按照先进后出的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶,需要读数据的时候从栈顶开始弹出数据(最后一个数据被第一个读出来)。栈具有记忆作用,对栈的插入与删除操作中,不需要改变栈底指针。

  栈是允许在同一端进行插入和删除操作的特殊线性表。允许进行插入和删除操作的一端称为栈顶(top),另一端为栈底(bottom);栈底固定,而栈顶浮动;栈中元素个数为零时称为空栈。插入一般称为进栈(PUSH),删除则称为退栈(POP)。

  由于堆叠数据结构只允许在一端进行操作,因而按照后进先出(LIFO, Last In First Out)的原理运作。栈也称为后进先出表。

  这里以羽毛球筒为例,羽毛球筒就是一个栈,刚开始羽毛球筒是空的,也就是空栈,然后我们一个一个放入羽毛球,也就是一个一个push进栈,当我们需要使用羽毛球的时候,从筒里面拿,也就是pop出栈,但是第一个拿到的羽毛球是我们最后放进去的。

++i和i++区别

1、首先,单独拿出来说++i和i++,意思都是一样的,就是i=i+1。

2、如果当做运算符来说,就是a=i++或者a=++i这样的形式。情况就不一样了。

先说a=i++,这个运算的意思是先把i的值赋予a,然后在执行i=i+1;

而a=++i,这个的意思是先执行i=i+1,然后在把i的值赋予a;

举个例子来说,如果一开始i=4。

那么执行a=i++这条语句之后,a=4,i=5;

那么执行a=++i这条语句之后,i=5,a=5;


 

package com.ys.datastructure;

public class MyStack {

    private int[] array;

    private int maxSize;

    private int top;

     

    public MyStack(int size){

        this.maxSize = size;

        array = new int[size];

        top = -1;

    }

    //压入数据

    public void push(int value){

        if(top < maxSize-1){

            array[++top] = value;

        }

    }

         //弹出栈顶数据

    public int pop(){

        return array[top--];

    }

        //访问栈顶数据

    public int peek(){

        return array[top];

    }

      //判断栈是否为空

    public boolean isEmpty(){

        return (top == -1);

    }

    //判断栈是否满了

    public boolean isFull(){

        return (top == maxSize-1);

    }

}

这个栈是用数组实现的,内部定义了一个数组,一个表示最大容量的值以及一个指向栈顶元素的top变量。构造方法根据参数规定的容量创建一个新栈,push()方法是向栈中压入元素,指向栈顶的变量top加一,使它指向原顶端数据项上面的一个位置,并在这个位置上存储一个数据。pop()方法返回top变量指向的元素,然后将top变量减一,便移除了数据项。要知道 top 变量指向的始终是栈顶的元素。

 

产生的问题:

①、上面栈的实现初始化容量之后,后面是不能进行扩容的(虽然栈不是用来存储大量数据的),如果说后期数据量超过初始容量之后怎么办?(新增一个方法,插入时判断是否超过数组容量,超过的话将size增加,然后 Object [] elementData = Arrays.copyOf(elementData, size);实现自动扩容)

②、我们是用数组实现栈,在定义数组类型的时候,也就规定了存储在栈中的数据类型,那么同一个栈能不能存储不同类型的数据呢?(声明为Object)

③、栈需要初始化容量,而且数组实现的栈元素都是连续存储的,那么能不能不初始化容量呢?(改为由链表实现)

利用栈实现字符串逆序

  我们知道栈是后进先出,我们可以将一个字符串分隔为单个的字符,然后将字符一个一个push()进栈,在一个一个pop()出栈就是逆序显示了。如下:

  将字符串“how are you” 反转!!!

ps:这里我们是用上面自定的栈来实现的,大家可以将ArrayStack替换为JDK自带的栈类Stack试试

//进行字符串反转

@Test

public void testStringReversal(){

    ArrayStack stack = new ArrayStack();

    String str = "how are you";

    char[] cha = str.toCharArray();

    for(char c : cha){

        stack.push(c);

    }

    while(!stack.isEmpty()){

        System.out.print(stack.pop());

    }

}

总结

对于栈的实现,我们稍微分析就知道,数据入栈和出栈的时间复杂度都为O(1),也就是说栈操作所耗的时间不依赖栈中数据项的个数,因此操作时间很短。而且需要注意的是栈不需要比较和移动操作,我们不要画蛇添足。 

队列

 队列(queue)是一种特殊的线性表,特殊之处在于它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作,和栈一样,队列是一种操作受限制的线性表。进行插入操作的端称为队尾,进行删除操作的端称为队头。队列中没有元素时,称为空队列。

  队列的数据元素又称为队列元素。在队列中插入一个队列元素称为入队,从队列中删除一个队列元素称为出队。因为队列只允许在一端插入,在另一端删除,所以只有最早进入队列的元素才能最先从队列中删除,故队列又称为先进先出(FIFO—first in first out)线性表。

  比如我们去电影院排队买票,第一个进入排队序列的都是第一个买到票离开队列的人,而最后进入排队序列排队的都是最后买到票的。

  在比如在计算机操作系统中,有各种队列在安静的工作着,比如打印机在打印列队中等待打印。

  队列分为:

①、单向队列(Queue):只能在一端插入数据,另一端删除数据。

②、双向队列(Deque):每一端都可以进行插入数据和删除数据操作。

  这里我们还会介绍一种队列——优先级队列,优先级队列是比栈和队列更专用的数据结构,在优先级队列中,数据项按照关键字进行排序,关键字最小(或者最大)的数据项往往在队列的最前面,而数据项在插入的时候都会插入到合适的位置以确保队列的有序。

在实现之前,我们先看下面几个问题:

①、与栈不同的是,队列中的数据不总是从数组的0下标开始的,移除一些队头front的数据后,队头指针会指向一个较高的下标位置

②、我们再设计时,队列中新增一个数据时,队尾的指针rear 会向上移动,也就是向下标大的方向。移除数据项时,队头指针 front 向上移动。那么这样设计好像和现实情况相反,比如排队买电影票,队头的买完票就离开了,然后队伍整体向前移动。在计算机中也可以在队列中删除一个数之后,队列整体向前移动,但是这样做效率很差。我们选择的做法是移动队头和队尾的指针。

③、如果向第②步这样移动指针,相信队尾指针很快就移动到数据的最末端了,这时候可能移除过数据,那么队头会有空着的位置,然后新来了一个数据项,由于队尾不能再向上移动了,那该怎么办呢?

  为了避免队列不满却不能插入新的数据,我们可以让队尾指针绕回到数组开始的位置,这也称为“循环队列”。

  弄懂原理之后,Java实现代码如下:

 

package com.ys.datastructure;

public class MyQueue {

    private Object[] queArray;

    //队列总大小

    private int maxSize;

    //前端

    private int front;

    //后端

    private int rear;

    //队列中元素的实际数目

    private int nItems;

     

    public MyQueue(int s){

        maxSize = s;

        queArray = new Object[maxSize];

        front = 0;

        rear = -1;

        nItems = 0;

    }

     

    //队列中新增数据

    public void insert(int value){

        if(isFull()){

            System.out.println("队列已满!!!");

        }else{

            //如果队列尾部指向顶了,那么循环回来,执行队列的第一个元素

            if(rear == maxSize -1){

                rear = -1;

            }

            //队尾指针加1,然后在队尾指针处插入新的数据

            queArray[++rear] = value;

            nItems++;

        }

    }

 

    //移除数据

    public Object remove(){

        Object removeValue = null ;

        if(!isEmpty()){

            removeValue = queArray[front];

            queArray[front] = null;

            front++;

            if(front == maxSize){

                front = 0;

            }

            nItems--;

            return removeValue;

        }

        return removeValue;

    

    //查看队头数据

    public Object peekFront(){

        return queArray[front];

    }

     

    //判断队列是否满了

    public boolean isFull(){

        return (nItems == maxSize);

    }

   

    //判断队列是否为空

    public boolean isEmpty(){

        return (nItems ==0);

    }

 

    //返回队列的大小

    public int getSize(){

        return nItems;

    }     

}

双端队列

双端队列就是一个两端都是结尾或者开头的队列, 队列的每一端都可以进行插入数据项和移除数据项,这些方法可以叫做:

insertRight()、insertLeft()、removeLeft()、removeRight()

如果严格禁止调用insertLeft()和removeLeft()(或禁用右端操作),那么双端队列的功能就和前面讲的栈功能一样。

如果严格禁止调用insertLeft()和removeRight(或相反的另一对方法),那么双端队列的功能就和单向队列一样了。

优先级队列

优先级队列(priority queue)是比栈和队列更专用的数据结构,在优先级队列中,数据项按照关键字进行排序,关键字最小(或者最大)的数据项往往在队列的最前面,而数据项在插入的时候都会插入到合适的位置以确保队列的有序。

  优先级队列是0个或多个元素的集合,每个元素都有一个优先权,对优先级队列执行的操作有:

  (1)查找

  (2)插入一个新元素

  (3)删除

  一般情况下,查找操作用来搜索优先权最大的元素,删除操作用来删除该元素。对于优先权相同的元素,可按先进先出次序处理或按任意优先权进行。

  这里我们用数组实现优先级队列,这种方法插入比较慢,但是它比较简单,适用于数据量比较小并且不是特别注重插入速度的情况。

  后面我们会讲解堆,用堆的数据结构来实现优先级队列,可以相当快的插入数据。

数组实现优先级队列,声明为int类型的数组,关键字是数组里面的元素,在插入的时候按照从大到小的顺序排列,也就是越小的元素优先级越高。

insert() 方法,先检查队列中是否有数据项,如果没有,则直接插入到下标为0的单元里,否则,从数组顶部开始比较,找到比插入值小的位置进行插入,并把 nItems 加1.

remove 方法直接获取顶部元素。

  优先级队列的插入操作需要O(N)的时间,而删除操作则需要O(1) 的时间,后面会讲解如何通过 堆 来改进插入时间。

总结

通过前面讲的栈以及本篇讲的队列这两种数据结构,我们稍微总结一下:

①、栈、队列(单向队列)、优先级队列通常是用来简化某些程序操作的数据结构,而不是主要作为存储数据的。

②、在这些数据结构中,只有一个数据项可以被访问。

③、栈允许在栈顶压入(插入)数据,在栈顶弹出(移除)数据,但是只能访问最后一个插入的数据项,也就是栈顶元素。

④、队列(单向队列)只能在队尾插入数据,对头删除数据,并且只能访问对头的数据。而且队列还可以实现循环队列,它基于数组,数组下标可以从数组末端绕回到数组的开始位置。

⑤、优先级队列是有序的插入数据,并且只能访问当前元素中优先级别最大(或最小)的元素。

⑥、这些数据结构都能由数组实现,但是可以用别的机制(后面讲的链表、堆等数据结构)实现。

 

链表

链表Linked list)是一种常见的基础数据结构,是一种线性表,但是并不会按线性的顺序存储数据,而是在每一个节点里存到下一个节点的指针(Pointer)。

  使用链表结构可以克服数组链表需要预先知道数据大小的缺点,链表结构可以充分利用计算机内存空间,实现灵活的内存动态管理。但是链表失去了数组随机读取的优点,同时链表由于增加了结点的指针域,空间开销比较大。

单向链表

单向链表是链表中结构最简单的。一个单链表的节点(Node)分为两个部分,第一个部分(data)保存或者显示关于节点的信息,另一个部分存储下一个节点的地址。最后一个节点存储地址的部分指向空值。

  单向链表只可向一个方向遍历,一般查找一个节点的时候需要从第一个节点开始每次访问下一个节点,一直访问到需要的位置。而插入一个节点,对于单向链表,我们只提供在链表头插入,只需要将当前插入的节点设置为头节点,next指向原头节点即可。删除一个节点,我们将该节点的上一个节点的next指向该节点的下一个节点。

  

  在表头增加节点:

  

  删除节点:

  

  ①、单向链表的具体实现

package com.ys.datastructure;

public class SingleLinkedList {
    private int size;//链表节点的个数
    private Node head;//头节点

    public SingleLinkedList(){
        size = 0;
        head = null;
    }

    //链表的每个节点类
    private class Node{
        private Object data;//每个节点的数据
        private Node next;//每个节点指向下一个节点的连接

        public Node(Object data){
            this.data = data;
        }
    }

    //在链表头添加元素
    public Object addHead(Object obj){
        Node newHead = new Node(obj);
        if(size == 0){
            head = newHead;
        }else{
            newHead.next = head;
            head = newHead;
        }
        size++;
        return obj;
    }

    //在链表头删除元素
    public Object deleteHead(){
        Object obj = head.data;
        head = head.next;
        size--;
        return obj;
    }

    //查找指定元素,找到了返回节点Node,找不到返回null
    public Node find(Object obj){
        Node current = head;
        int tempSize = size;
        while(tempSize > 0){
            if(obj.equals(current.data)){
                return current;
            }else{
                current = current.next;
            }
            tempSize--;
        }
        return null;
    }

    //删除指定的元素,删除成功返回true
    public boolean delete(Object value){
        if(size == 0){
            return false;
        }
        Node current = head;
        Node previous = head;
        while(current.data != value){
            if(current.next == null){
                return false;
            }else{
                previous = current;
                current = current.next;
            }
        }
        //如果删除的节点是第一个节点
        if(current == head){
            head = current.next;
            size--;
        }else{//删除的节点不是第一个节点
            previous.next = current.next;
            size--;
        }
        return true;
    }

    //判断链表是否为空
    public boolean isEmpty(){
        return (size == 0);
    }

    //显示节点信息
    public void display(){
        if(size >0){
            Node node = head;
            int tempSize = size;
            if(tempSize == 1){//当前链表只有一个节点
                System.out.println("["+node.data+"]");
                return;
            }
            while(tempSize>0){
                if(node.equals(head)){
                    System.out.print("["+node.data+"->");
                }else if(node.next == null){
                    System.out.print(node.data+"]");
                }else{
                    System.out.print(node.data+"->");
                }
                node = node.next;
                tempSize--;
            }
            System.out.println();
        }else{//如果链表一个节点都没有,直接打印[]
            System.out.println("[]");
        }

    }

}

②、用单向链表实现栈

  栈的pop()方法和push()方法,对应于链表的在头部删除元素deleteHead()以及在头部增加元素addHead()。

package com.ys.datastructure;

public class StackSingleLink {
    private SingleLinkedList link;

    public StackSingleLink(){
        link = new SingleLinkedList();
    }

    //添加元素
    public void push(Object obj){
        link.addHead(obj);
    }

    //移除栈顶元素
    public Object pop(){
        Object obj = link.deleteHead();
        return obj;
    }

    //判断是否为空
    public boolean isEmpty(){
        return link.isEmpty();
    }

    //打印栈内元素信息
    public void display(){
        link.display();
    }

}

双端链表

对于单向链表,我们如果想在尾部添加一个节点,那么必须从头部一直遍历到尾部,找到尾节点,然后在尾节点后面插入一个节点。这样操作很麻烦,如果我们在设计链表的时候多个对尾节点的引用,那么会简单很多。

  

  注意和后面将的双向链表的区别!!!

用双端链表实现队列

package com.ys.link;

public class QueueLinkedList {

    private DoublePointLinkedList dp;

    public QueueLinkedList(){
        dp = new DoublePointLinkedList();
    }
    public void insert(Object data){
        dp.addTail(data);
    }

    public void delete(){
        dp.deleteHead();
    }

    public boolean isEmpty(){
        return dp.isEmpty();
    }

    public int getSize(){
        return dp.getSize();
    }

    public void display(){
        dp.display();
    }

}

有序链表

前面的链表实现插入数据都是无序的,在有些应用中需要链表中的数据有序,这称为有序链表。

  在有序链表中,数据是按照关键值有序排列的。一般在大多数需要使用有序数组的场合也可以使用有序链表。有序链表优于有序数组的地方是插入的速度(因为元素不需要移动),另外链表可以扩展到全部有效的使用内存,而数组只能局限于一个固定的大小中。

在有序链表中插入和删除某一项最多需要O(N)次比较,平均需要O(N/2)次,因为必须沿着链表上一步一步走才能找到正确的插入位置,然而可以最快速度删除最值,因为只需要删除表头即可,如果一个应用需要频繁的存取最小值,且不需要快速的插入,那么有序链表是一个比较好的选择方案。比如优先级队列可以使用有序链表来实现。

有序链表和无序数组组合排序

比如有一个无序数组需要排序,前面我们在讲解冒泡排序、选择排序、插入排序这三种简单的排序时,需要的时间级别都是O(N2)。

  现在我们讲解了有序链表之后,对于一个无序数组,我们先将数组元素取出,一个一个的插入到有序链表中,然后将他们从有序链表中一个一个删除,重新放入数组,那么数组就会排好序了。和插入排序一样,如果插入了N个新数据,那么进行大概N2/4次比较。但是相对于插入排序,每个元素只进行了两次排序,一次从数组到链表,一次从链表到数组,大概需要2*N次移动,而插入排序则需要N2次移动,

  效率肯定是比前面讲的简单排序要高,但是缺点就是需要开辟差不多两倍的空间,而且数组和链表必须在内存中同时存在,如果有现成的链表可以用,那么这种方法还是挺好的。

双向链表

  我们知道单向链表只能从一个方向遍历,那么双向链表它可以从两个方向遍历。

  

  具体代码实现:

       我们也可以用双向链表来实现双端队列,这里就不做具体代码演示了。

总结

上面我们讲了各种链表,每个链表都包括一个LinikedList对象和许多Node对象,LinkedList对象通常包含头和尾节点的引用,分别指向链表的第一个节点和最后一个节点。而每个节点对象通常包含数据部分data,以及对上一个节点的引用prev和下一个节点的引用next,只有下一个节点的引用称为单向链表,两个都有的称为双向链表。next值为null则说明是链表的结尾,如果想找到某个节点,我们必须从第一个节点开始遍历,不断通过next找到下一个节点,直到找到所需要的。栈和队列可以用数组来实现,也可以用链表实现。

前面我们介绍数组的数据结构,我们知道对于有序数组,查找很快,并介绍可以通过二分法查找,但是想要在有序数组中插入一个数据项,就必须先找到插入数据项的位置,然后将所有插入位置后面的数据项全部向后移动一位,来给新数据腾出空间,平均来讲要移动N/2次,这是很费时的。同理,删除数据也是。

  然后我们介绍了另外一种数据结构——链表,链表的插入和删除很快,我们只需要改变一些引用值就行了,但是查找数据却很慢了,因为不管我们查找什么数据,都需要从链表的第一个数据项开始,遍历到找到所需数据项为止,这个查找也是平均需要比较N/2次。

  那么我们就希望一种数据结构能同时具备数组查找快的优点以及链表插入和删除快的优点,于是 树 诞生了。

(tree)是一种抽象数据类型(ADT),用来模拟具有树状结构性质的数据集合。它是由n(n>0)个有限节点通过连接它们的组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

  

  ①、节点:上图的圆圈,比如A,B,C等都是表示节点。节点一般代表一些实体,在java面向对象编程中,节点一般代表对象。

  ②、边:连接节点的线称为边,边表示节点的关联关系。一般从一个节点到另一个节点的唯一方法就是沿着一条顺着有边的道路前进。在Java当中通常表示引用。

  树有很多种,向上面的一个节点有多余两个的子节点的树,称为多路树,后面会讲解2-3-4树和外部存储都是多路树的例子。而每个节点最多只能有两个子节点的一种形式称为二叉树,这也是本篇博客讲解的重点。

  树的常用术语

  

  ①、路径:顺着节点的边从一个节点走到另一个节点,所经过的节点的顺序排列就称为“路径”。

  ②、:树顶端的节点称为根。一棵树只有一个根,如果要把一个节点和边的集合称为树,那么从根到其他任何一个节点都必须有且只有一条路径。A是根节点。

  ③、父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点;B是D的父节点。

  ④、子节点:一个节点含有的子树的根节点称为该节点的子节点;D是B的子节点。

  ⑤、兄弟节点:具有相同父节点的节点互称为兄弟节点;比如上图的D和E就互称为兄弟节点。

  ⑥、叶节点:没有子节点的节点称为叶节点,也叫叶子节点,比如上图的H、E、F、G都是叶子节点。

  ⑦、子树:每个节点都可以作为子树的根,它和它所有的子节点、子节点的子节点等都包含在子树中。

  ⑧、节点的层次:从根开始定义,根为第一层,根的子节点为第二层,以此类推。

  ⑨、深度:对于任意节点n,n的深度为从根到n的唯一路径长,根的深度为0;

  ⑩、高度:对于任意节点n,n的高度为从n到一片树叶的最长路径长,所有树叶的高度为0;

二叉树

  二叉树:树的每个节点最多只能有两个子节点

  上面的第一幅图B节点有DEF三个子节点,就不是二叉树,称为多路树;而第二幅图每个节点最多只有两个节点,是二叉树,并且二叉树的子节点称为“左子节点”和“右子节点”。上图的D,E分别是B的左子节点和右子节点。

  如果我们给二叉树加一个额外的条件,就可以得到一种被称作二叉搜索树(binary search tree)的特殊二叉树。

  二叉搜索树要求:若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树。

  

 

1、二叉树的概念

二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree),其次序不能任意颠倒。

2、性质

(1)若二叉树的层次从0开始,则在二叉树的第i层至多有2^i个结点(i>=0);

(2)高度为k的二叉树最多有2^(k+1) - 1个结点(k>=-1)。 (空树的高度为-1);

(3)对任何一棵二叉树,如果其叶子结点(度为0)数为m, 度为2的结点数为n, 则m = n + 1。

二、几种特殊的二叉树

1、满二叉树

所有叶结点同处于最底层(非底层结点均是内部结点),一个深度为k(>=-1)且有2^(k+1) - 1个结点。如图(图来源于veil的博客):

 

2、完全二叉树

叶结点只能出现在最底层的两层,且最底层叶结点均处于次底层叶结点的左侧。规模为n的完全二叉树,高度为

 

3、平衡二叉树

 平衡二叉树(Self-balancing binary search tree)又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。平衡二叉树的常用实现方法有红黑树AVL替罪羊树Treap伸展树等。 最小二叉平衡树的节点的公式如下 F(n)=F(n-1)+F(n-2)+1 这个类似于一个递归的数列,可以参考Fibonacci(斐波那契)数列,1是根节点,F(n-1)是左子树的节点数量,F(n-2)是右子树的节点数量。(百度百科)

对于平衡二叉树要特别注意的是,不要求非叶节点都有两个子结点,仅要求两个子树的高度差的绝对值不超过1,或者为空树。

三、存储方式

存储的方式和图一样,有链表和数组两种,用数组存访问速度快,但插入、删除节点操作就比较费时了。实际中更多的是用链来表示二叉树的。

  二叉搜索树作为一种数据结构,那么它是如何工作的呢?它查找一个节点,插入一个新节点,以及删除一个节点,遍历树等工作效率如何,下面我们来一一介绍。

二叉树的节点类:

1

2

3

4

5

6

7

8

9

10

11

12

package com.ys.tree;

 

public class Node {

    private Object data;    //节点数据

    private Node leftChild; //左子节点的引用

    private Node rightChild; //右子节点的引用

    //打印节点内容

    public void display(){

        System.out.println(data);

    }

 

}

二叉树的具体方法:

1

2

3

4

5

6

7

8

9

10

11

package com.ys.tree;

 

public interface Tree {

    //查找节点

    public Node find(Object key);

    //插入新节点

    public boolean insert(Object key);

    //删除节点

    public boolean delete(Object key);

    //Other Method......

}

 

查找某个节点,我们必须从根节点开始遍历。

  ①、查找值比当前节点值大,则搜索右子树;

  ②、查找值等于当前节点值,停止搜索(终止条件);

  ③、查找值小于当前节点值,则搜索左子树;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

//查找节点

public Node find(int key) {

    Node current = root;

    while(current != null){

        if(current.data > key){//当前值比查找值大,搜索左子树

            current = current.leftChild;

        }else if(current.data < key){//当前值比查找值小,搜索右子树

            current = current.rightChild;

        }else{

            return current;

        }

    }

    return null;//遍历完整个树没找到,返回null

}

  用变量current来保存当前查找的节点,参数key是要查找的值,刚开始查找将根节点赋值到current。接在在while循环中,将要查找的值和current保存的节点进行对比。如果key小于当前节点,则搜索当前节点的左子节点,如果大于,则搜索右子节点,如果等于,则直接返回节点信息。当整个树遍历完全,即current == null,那么说明没找到查找值,返回null。

  树的效率:查找节点的时间取决于这个节点所在的层数,每一层最多有2的n-1次个节点,总共N层共有2的n次-1个节点,那么时间复杂度为O(logN),底数为2。

  我看评论有对这里的时间复杂度不理解,这里解释一下,O(logN),N表示的是二叉树节点的总数,而不是层数。

其实查询的次数可以看成遍历的层数即n,根据时间复杂度要看最差的结果,所以最差的情况就是遍历n层再加1,而二叉树的节点数:2的n次-1=N,n=logN,底数为2

插入节点

要插入节点,必须先找到插入的位置。与查找操作相似,由于二叉搜索树的特殊性,待插入的节点也需要从根节点开始进行比较,小于根节点则与根节点左子树比较,反之则与右子树比较,直到左子树为空或右子树为空,则插入到相应为空的位置,在比较的过程中要注意保存父节点的信息 及 待插入的位置是父节点的左子树还是右子树,才能插入到正确的位置。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

//插入节点

public boolean insert(int data) {

    Node newNode = new Node(data);

    if(root == null){//当前树为空树,没有任何节点

        root = newNode;

        return true;

    }else{

        Node current = root;

        Node parentNode = null;

        while(current != null){

            parentNode = current;

            if(current.data > data){//当前值比插入值大,搜索左子节点

                current = current.leftChild;

                if(current == null){//左子节点为空,直接将新值插入到该节点

                    parentNode.leftChild = newNode;

                    return true;

                }

            }else{

                current = current.rightChild;

                if(current == null){//右子节点为空,直接将新值插入到该节点

                    parentNode.rightChild = newNode;

                    return true;

                }

            }

        }

    }

    return false;

}

遍历树

遍历树是根据一种特定的顺序访问树的每一个节点。比较常用的有前序遍历,中序遍历和后序遍历。而二叉搜索树最常用的是中序遍历。

  ①、中序遍历:左子树——》根节点——》右子树

  ②、前序遍历:根节点——》左子树——》右子树

  ③、后序遍历:左子树——》右子树——》根节点

 

//中序遍历

public void infixOrder(Node current){

    if(current != null){

        infixOrder(current.leftChild);

        System.out.print(current.data+" ");

        infixOrder(current.rightChild);

    }

}

 

//前序遍历

public void preOrder(Node current){

    if(current != null){

        System.out.print(current.data+" ");

        preOrder(current.leftChild);

        preOrder(current.rightChild);

    }

}

 

//后序遍历

public void postOrder(Node current){

    if(current != null){

        postOrder(current.leftChild);

        postOrder(current.rightChild);

        System.out.print(current.data+" ");

    }

}

查找最大值和最小值

这没什么好说的,要找最小值,先找根的左节点,然后一直找这个左节点的左节点,直到找到没有左节点的节点,那么这个节点就是最小值。同理要找最大值,一直找根节点的右节点,直到没有右节点,则就是最大值。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

//找到最大值

public Node findMax(){

    Node current = root;

    Node maxNode = current;

    while(current != null){

        maxNode = current;

        current = current.rightChild;

    }

    return maxNode;

}

//找到最小值

public Node findMin(){

    Node current = root;

    Node minNode = current;

    while(current != null){

        minNode = current;

        current = current.leftChild;

    }

    return minNode;

}

删除节点

删除节点是二叉搜索树中最复杂的操作,删除的节点有三种情况,前两种比较简单,但是第三种却很复杂。

  1、该节点是叶节点(没有子节点)

  2、该节点有一个子节点

  3、该节点有两个子节点

  下面我们分别对这三种情况进行讲解。

  ①、删除没有子节点的节点

  要删除叶节点,只需要改变该节点的父节点引用该节点的值,即将其引用改为 null 即可。要删除的节点依然存在,但是它已经不是树的一部分了,由于Java语言的垃圾回收机制,我们不需要非得把节点本身删掉,一旦Java意识到程序不在与该节点有关联,就会自动把它清理出存储器。

  

 

  删除节点,我们要先找到该节点,并记录该节点的父节点。在检查该节点是否有子节点。如果没有子节点,接着检查其是否是根节点,如果是根节点,只需要将其设置为null即可。如果不是根节点,是叶节点,那么断开父节点和其的关系即可。

  ②、删除有一个子节点的节点

  删除有一个子节点的节点,我们只需要将其父节点原本指向该节点的引用,改为指向该节点的子节点即可。

  

 

  ③、删除有两个子节点的节点

   

  当删除的节点存在两个子节点,那么删除之后,两个子节点的位置我们就没办法处理了。既然处理不了,我们就想到一种办法,用另一个节点来代替被删除的节点,那么用哪一个节点来代替呢?

  我们知道二叉搜索树中的节点是按照关键字来进行排列的,某个节点的关键字次高节点是它的中序遍历后继节点。用后继节点来代替删除的节点,显然该二叉搜索树还是有序的。(这里用后继节点代替,如果该后继节点自己也有子节点,我们后面讨论。)

  

  那么如何找到删除节点的中序后继节点呢?其实我们稍微分析,这实际上就是要找比删除节点关键值大的节点集合中最小的一个节点,只有这样代替删除节点后才能满足二叉搜索树的特性。

  后继节点也就是:比删除节点大的最小节点。

  算法:程序找到删除节点的右节点,(注意这里前提是删除节点存在左右两个子节点,如果不存在则是删除情况的前面两种),然后转到该右节点的左子节点,依次顺着左子节点找下去,最后一个左子节点即是后继节点;如果该右节点没有左子节点,那么该右节点便是后继节点。

  

  需要确定后继节点没有子节点,如果后继节点存在子节点,那么又要分情况讨论了。

  ①、后继节点是删除节点的右子节点

  这种情况简单,只需要将后继节点表示的子树移到被删除节点的位置即可!

  

  ②、后继节点是删除节点的右子节点的左子节点

  

 

  ④、删除有必要吗?

   通过上面的删除分类讨论,我们发现删除其实是挺复杂的,那么其实我们可以不用真正的删除该节点,只需要在Node类中增加一个标识字段isDelete,当该字段为true时,表示该节点已经删除,反正没有删除。那么我们在做比如find()等操作的时候,要先判断isDelete字段是否为true。这样删除的节点并不会改变树的结构。

1

2

3

4

5

6

public class Node {

    int data;   //节点数据

    Node leftChild; //左子节点的引用

    Node rightChild; //右子节点的引用

    boolean isDelete;//表示节点是否被删除

}

二叉树的效率

从前面的大部分对树的操作来看,都需要从根节点到下一层一层的查找。

  一颗满树,每层节点数大概为2n-1,那么最底层的节点个数比树的其它节点数多1,因此,查找、插入或删除节点的操作大约有一半都需要找到底层的节点,另外四分之一的节点在倒数第二层,依次类推。

  总共N层共有2n-1个节点,那么时间复杂度为O(logn),底数为2。

  在有1000000 个数据项的无序数组和链表中,查找数据项平均会比较500000 次,但是在有1000000个节点的二叉树中,只需要20次或更少的比较即可。

  有序数组可以很快的找到数据项,但是插入数据项的平均需要移动 500000 次数据项,在 1000000 个节点的二叉树中插入数据项需要20次或更少比较,在加上很短的时间来连接数据项。

  同样,从 1000000 个数据项的数组中删除一个数据项平均需要移动 500000 个数据项,而在 1000000 个节点的二叉树中删除节点只需要20次或更少的次数来找到他,然后在花一点时间来找到它的后继节点,一点时间来断开节点以及连接后继节点。

  所以,树对所有常用数据结构的操作都有很高的效率。

  遍历可能不如其他操作快,但是在大型数据库中,遍历是很少使用的操作,它更常用于程序中的辅助算法来解析算术或其它表达式。

红黑树

有如下两个特征:

  ①、节点都有颜色;

  ②、在插入和删除的过程中,要遵循保持这些颜色的不同排列规则。

  第一个很好理解,在红-黑树中,每个节点的颜色或者是黑色或者是红色的。当然也可以是任意别的两种颜色,这里的颜色用于标记,我们可以在节点类Node中增加一个boolean型变量isRed,以此来表示颜色的信息。

  第二点,在插入或者删除一个节点时,必须要遵守的规则称为红-黑规则:

  1.每个节点不是红色就是黑色的;

  2.根节点总是黑色的;

  3.如果节点是红色的,则它的子节点必须是黑色的(反之不一定),(也就是从每个叶子到根的所有路径上不能有两个连续的红色节点);

  4.从根节点到叶节点或空子节点的每条路径,必须包含相同数目的黑色节点(即相同的黑色高度)。

  从根节点到叶节点的路径上的黑色节点的数目称为黑色高度,规则 4 另一种表示就是从根到叶节点路径上的黑色高度必须相同。

  注意:新插入的节点颜色总是红色的,这是因为插入一个红色节点比插入一个黑色节点违背红-黑规则的可能性更小,原因是插入黑色节点总会改变黑色高度(违背规则4),但是插入红色节点只有一半的机会会违背规则3(因为父节点是黑色的没事,父节点是红色的就违背规则3)。另外违背规则3比违背规则4要更容易修正。当插入一个新的节点时,可能会破坏这种平衡性,那么红-黑树是如何修正的呢?

红黑树的自我修正

红-黑树主要通过三种方式对平衡进行修正,改变节点颜色、左旋和右旋。

 

  ①、改变节点颜色

  

  新插入的节点为15,一般新插入颜色都为红色,那么我们发现直接插入会违反规则3,改为黑色却发现违反规则4。这时候我们将其父节点颜色改为黑色,父节点的兄弟节点颜色也改为黑色。通常其祖父节点50颜色会由黑色变为红色,但是由于50是根节点,所以我们这里不能改变根节点颜色。

  ②、右旋

  首先要说明的是节点本身是不会旋转的,旋转改变的是节点之间的关系,选择一个节点作为旋转的顶端,如果做一次右旋,这个顶端节点会向下和向右移动到它右子节点的位置,它的左子节点会上移到它原来的位置。右旋的顶端节点必须要有左子节点。

  

  ③、左旋

  左旋的顶端节点必须要有右子节点。

  

   注意:我们改变颜色也是为了帮助我们判断何时执行什么旋转,而旋转是为了保证树的平衡。光改变节点颜色是不能起到任何作用的,旋转才是关键的操作,在新增节点或者删除节点之后,可能会破坏二叉树的平衡,那么何时执行旋转以及执行什么旋转,这是我们需要重点关注的。

删除节点

上面探讨完了红-黑树的插入操作,接下来讨论删除,红-黑树的删除和二叉查找树的删除是一样的,只不过删除后多了个平衡的修复而已。我们先来回忆一下二叉搜索树的删除:

  ①、如果待删除的节点没有子节点,那么直接删除即可。

  ②、如果待删除的节点只有一个子节点,那么直接删掉,并用其子节点去顶替它。

  ③、如果待删除的节点有两个子节点,这种情况比较复杂:首先找出它的后继节点,然后处理“后继节点”和“被删除节点的父节点”之间的关系,最后处理“后继节点的子节点”和“被删除节点的子节点”之间的关系。每一步中也会有不同的情况。

  实际上,删除过程太复杂了,很多情况下会采用在节点类中添加一个删除标记,并不是真正的删除节点。详细的删除我们这里不做讨论。

红黑树的效率

红黑树的查找、插入和删除时间复杂度都为O(log2N),额外的开销是每个节点的存储空间都稍微增加了一点,因为一个存储红黑树节点的颜色变量。插入和删除的时间要增加一个常数因子,因为要进行旋转,平均一次插入大约需要一次旋转,因此插入的时间复杂度还是O(log2N),(时间复杂度的计算要省略常数),但实际上比普通的二叉树是要慢的。

  大多数应用中,查找的次数比插入和删除的次数多,所以应用红黑树取代普通的二叉搜索树总体上不会有太多的时间开销。而且红黑树的优点是对于有序数据的操作不会慢到O(N)的时间复杂度。

为什么要搞红黑树

二叉搜索树对于某个节点而言,其左子树的节点关键值都小于该节点关键值,右子树的所有节点关键值都大于该节点关键值。二叉搜索树作为一种数据结构,其查找、插入和删除操作的时间复杂度都为O(logn),底数为2。但是我们说这个时间复杂度是在平衡的二叉搜索树上体现的,也就是如果插入的数据是随机的,则效率很高,但是如果插入的数据是有序的,比如从小到大的顺序【10,20,30,40,50】插入到二叉搜索树中:

  

  从大到小就是全部在左边,这和链表没有任何区别了,这种情况下查找的时间复杂度为O(N),而不是O(logN)。当然这是在最不平衡的条件下,实际情况下,二叉搜索树的效率应该在O(N)和O(logN)之间,这取决于树的不平衡程度。

  那么为了能够以较快的时间O(logN)来搜索一棵树,我们需要保证树总是平衡的(或者大部分是平衡的),也就是说每个节点的左子树节点个数和右子树节点个数尽量相等。红-黑树的就是这样的一棵平衡树,对一个要插入的数据项(删除也是),插入例程要检查会不会破坏树的特征,如果破坏了,程序就会进行纠正,根据需要改变树的结构,从而保持树的平衡。

为什么不使用AVL树而使用红黑树?

(1)AVL以及红黑树是高度平衡的树数据结构。它们非常相似,真正的区别在于在任何添加/删除操作时完成的旋转操作次数。
(2)两种实现都缩放为a O(lg N),其中N是叶子的数量,但实际上AVL树在查找密集型任务上更快:利用更好的平衡,树遍历平均更短。另一方面,插入和删除方面,AVL树速度较慢:需要更高的旋转次数才能在修改时正确地重新平衡数据结构。
(3)在AVL树中,从根到任何叶子的最短路径和最长路径之间的差异最多为1。在红黑树中,差异可以是2倍。
(4)两个都给O(log n)查找,但平衡AVL树可能需要O(log n)旋转,而红黑树将需要最多两次旋转使其达到平衡(尽管可能需要检查O(log n)节点以确定旋转的位置)。旋转本身是O(1)操作,因为你只是移动指针。

 

 

哈希表

Hash表也称散列表,也有直接译作哈希表,Hash表是一种根据关键字值(key - value)而直接进行访问的数据结构。它基于数组,通过把关键字映射到数组的某个下标来加快查找速度,但是又和数组、链表、树等数据结构不同,在这些数据结构中查找某个关键字,通常要遍历整个数据结构,也就是O(N)的时间级,但是对于哈希表来说,只是O(1)的时间级。

  注意,这里有个重要的问题就是如何把关键字转换为数组的下标,这个转换的函数称为哈希函数(也称散列函数),转换的过程称为哈希化。

哈希函数

第一种方法:取余,得到一个数被另一个整数除后的余数。首先我们假设要把从0-199的数字(用largeNumber表示),压缩为从0-9的数字(用smallNumber表示),后者有10个数,所以变量smallRange 的值为10,这个转换的表达式为:

  smallNumber = largeNumber % smallRange

  当一个数被 10 整除时,余数一定在0-9之间,这样,我们就把从0-199的数压缩为从0-9的数,压缩率为 20 :1。

  

 

  我们也可以用类似的方法把表示单词唯一的数压缩成数组的下标:

  arrayIndex = largerNumber % smallRange

  这也就是哈希函数。它把一个大范围的数字哈希(转化)成一个小范围的数字,这个小范围的数对应着数组的下标。使用哈希函数向数组插入数据后,这个数组就是哈希表。

哈希冲突

把巨大的数字范围压缩到较小的数字范围,那么肯定会有几个不同的单词哈希化到同一个数组下标,即产生了冲突

  冲突可能会导致哈希化方案无法实施,前面我们说指定的数组范围大小是实际存储数据的两倍,因此可能有一半的空间是空着的,所以,当冲突产生时,一个方法是通过系统的方法找到数组的一个空位,并把这个单词填入,而不再用哈希函数得到数组的下标,这种方法称为开放地址法。比如加入单词 cats 哈希化的结果为5421,但是它的位置已经被单词parsnip占用了,那么我们会考虑将单词 cats 存放在parsnip后面的一个位置 5422 上。

  另一种方法,前面我们也提到过,就是数组的每个数据项都创建一个子链表或子数组,那么数组内不直接存放单词,当产生冲突时,新的数据项直接存放到这个数组下标表示的链表中,这种方法称为链地址法。

开放地址法

开放地址法中,若数据项不能直接存放在由哈希函数所计算出来的数组下标时,就要寻找其他的位置。分别有三种方法:线性探测、二次探测以及再哈希法。

  ①、线性探测

  在线性探测中,它会线性的查找空白单元。比如如果 5421 是要插入数据的位置,但是它已经被占用了,那么就使用5422,如果5422也被占用了,那么使用5423,以此类推,数组下标依次递增,直到找到空白的位置。这就叫做线性探测,因为它沿着数组下标一步一步顺序的查找空白单元。

需要注意的是,当哈希表变得太满时,我们需要扩展数组,但是需要注意的是,数据项不能放到新数组中和老数组相同的位置,而是要根据数组大小重新计算插入位置。这是一个比较耗时的过程,所以一般我们要确定数据的范围,给定好数组的大小,而不再扩容。

  另外,当哈希表变得比较满时,我们每插入一个新的数据,都要频繁的探测插入位置,因为可能很多位置都被前面插入的数据所占用了,这称为聚集。数组填的越满,聚集越可能发生。

  这就像人群,当某个人在商场晕倒时,人群就会慢慢聚集。最初的人群聚过来是因为看到了那个倒下的人,而后面聚过来的人是因为它们想知道这些人聚在一起看什么。人群聚集的越大,吸引的人就会越多。

  ②、装填因子

  已填入哈希表的数据项和表长的比率叫做装填因子,比如有10000个单元的哈希表填入了6667 个数据后,其装填因子为 2/3。当装填因子不太大时,聚集分布的比较连贯,而装填因子比较大时,则聚集发生的很大了。

  我们知道线性探测是一步一步的往后面探测,当装填因子比较大时,会频繁的产生聚集,那么如果我们探测比较大的单元,而不是一步一步的探测呢,这就是下面要讲的二次探测。

  ③、二次探测

   二测探测是防止聚集产生的一种方式,思想是探测相距较远的单元,而不是和原始位置相邻的单元。

  线性探测中,如果哈希函数计算的原始下标是x, 线性探测就是x+1, x+2, x+3, 以此类推;而在二次探测中,探测的过程是x+1, x+4, x+9, x+16,以此类推,到原始位置的距离是步数的平方。二次探测虽然消除了原始的聚集问题,但是产生了另一种更细的聚集问题,叫二次聚集:比如讲184,302,420和544依次插入表中,它们的映射都是7,那么302需要以1为步长探测,420需要以4为步长探测, 544需要以9为步长探测。只要有一项其关键字映射到7,就需要更长步长的探测,这个现象叫做二次聚集。二次聚集不是一个严重的问题,但是二次探测不会经常使用,因为还有好的解决方法,比如再哈希法。

④、再哈希法

  为了消除原始聚集和二次聚集,我们使用另外一种方法:再哈希法。

  我们知道二次聚集的原因是,二测探测的算法产生的探测序列步长总是固定的:1,4,9,16以此类推。那么我们想到的是需要产生一种依赖关键字的探测序列,而不是每个关键字都一样,那么,不同的关键字即使映射到相同的数组下标,也可以使用不同的探测序列。

  方法是把关键字用不同的哈希函数再做一遍哈希化,用这个结果作为步长。对于指定的关键字,步长在整个探测中是不变的,不过不同的关键字使用不同的步长。

  第二个哈希函数必须具备如下特点:

  一、和第一个哈希函数不同

  二、不能输出0(否则,将没有步长,每次探测都是原地踏步,算法将陷入死循环)。

  专家们已经发现下面形式的哈希函数工作的非常好:stepSize = constant - key % constant; 其中constant是质数,且小于数组容量。
  再哈希法要求表的容量是一个质数,假如表长度为15(0-14),非质数,有一个特定关键字映射到0,步长为5,则探测序列是0,5,10,0,5,10,以此类推一直循环下去。算法只尝试这三个单元,所以不可能找到某些空白单元,最终算法导致崩溃。如果数组容量为13, 质数,探测序列最终会访问所有单元。即0,5,10,2,7,12,4,9,1,6,11,3,一直下去,只要表中有一个空位,就可以探测到它。

 

链地址法

在开放地址法中,通过再哈希法寻找一个空位解决冲突问题,另一个方法是在哈希表每个单元中设置链表(即链地址法),某个数据项的关键字值还是像通常一样映射到哈希表的单元,而数据项本身插入到这个单元的链表中。其他同样映射到这个位置的数据项只需要加到链表中,不需要在原始的数组中寻找空位。

链地址法中,装填因子(数据项数和哈希表容量的比值)与开放地址法不同,在链地址法中,需要有N个单元的数组中转入N个或更多的数据项,因此装填因子一般为1,或比1大(有可能某些位置包含的链表中包含两个或两个以上的数据项)。

  找到初始单元需要O(1)的时间级别,而搜索链表的时间与M成正比,M为链表包含的平均项数,即O(M)的时间级别。

另外一种方法类似于链地址法,它是在每个数据项中使用子数组,而不是链表。这样的数组称为桶。

  这个方法显然不如链表有效,因为桶的容量不好选择,如果容量太小,可能会溢出,如果太大,又造成性能浪费,而链表是动态分配的,不存在此问题。所以一般不使用桶。

 

讲一下B树和B+树的区别

其实二者最主要的区别是: 

(1) B+树改进了B树, 让内结点只作索引使用, 去掉了其中指向data record的指针, 使得每个结点中能够存放更多的key, 因此能有更大的出度. 这有什么用? 这样就意味着存放同样多的key, 树的层高能进一步被压缩, 使得检索的时间更短. 

(2)当然了,由于底部的叶子结点是链表形式, 因此也可以实现更方便的顺序遍历, 但是这是比较次要的, 最主要的的还是第(1)点.

Java中的队列都有哪些,有什么区别?

Queue: 基本上,一个队列就是一个先入先出(FIFO)的数据结构

Queue接口与List、Set同一级别,都是继承了Collection接口。LinkedList实现了Deque接 口。

1、未实现阻塞接口的:
  LinkedList : 实现了Deque接口,受限的队列
  PriorityQueue : 优先队列,本质维护一个有序列表。可自然排序亦可传递 comparator构造函数实现自定义排序。
  ConcurrentLinkedQueue:基于链表 线程安全的队列。增加删除O(1) 查找O(n)

2、实现阻塞接口的:

  实现blockqueue接口的五个阻塞队列,其特点:线程阻塞时,不是直接添加或者删除元素,而是等到有空间或者元素时,才进行操作。

  ArrayBlockingQueue: 基于数组的有界队列
  LinkedBlockingQueue: 基于链表的无界队列
  ProiporityBlockingQueue:基于优先次序的无界队列
  DelayQueue:基于时间优先级的队列
  SynchronousQueue:内部没有容器的队列 较特别 --其独有的线程一一配对通信机制

 

ArrayBlockingQueue 和 LinkedBlockingQueue 区别

1.队列中的锁的实现不同

       ArrayBlockingQueue中的锁是没有分离的,即生产和消费用的是同一个锁;

       LinkedBlockingQueue中的锁是分离的,即生产用的是putLock,消费是takeLock

2.在生产或消费时操作不同

     ArrayBlockingQueue基于数组,在生产和消费的时候,是直接将枚举对象插入或移除的,不会产生或销毁任何额外的对象实例;

     LinkedBlockingQueue基于链表,在生产和消费的时候,需要把枚举对象转换为Node<E>进行插入或移除,会生成一个额外的Node对象,这在长时间内需要高效并发地处理大批量数据的系统中,其对于GC的影响还是存在一定的区别。

3.队列大小初始化方式不同

     ArrayBlockingQueue是有界的,必须指定队列的大小;

     LinkedBlockingQueue是无界的,可以不指定队列的大小,但是默认是Integer.MAX_VALUE。当然也可以指定队列大小,从而成为有界的。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值