变差函数是Motheron在1965年提出的一种矩估计方法,为区域化变量的增量平方的数学期望,也就是区域化变量的增量的方差,很多学者直接将半变差函数称之为变差函数。
变差函数是地统计学特有的研究工具,不仅能够表征区域化变量的空间结构性,而且能够表征区域化变量的随机性,反映了区域化变量在某个方向上某一距离范围内的变化程度。
若在区间(a,b)中,函数f(x)能够表成Φ(x)一Ψ(x)的形状,而Φ与Ψ都是非减有界函数,则称f(x)在(a,b)中是有界变差的.易见两有界变差函数的和、差与积也都是有界变差的.
定义
编辑
它的另外几种定义如下:
定义一
设
区间(a,b)被点a=x0<x1<…<xn=b所划分,若
定义二
设f是定义在区间[a,b]上的函数,考察[a,b]上的任意一组分点:a=x0<x1<…<xn=b,当分点变动时,称上确界
定义三
令

则称f(x)为[a,b]上的有界变差函数。记
(f)=sup
(f,D),称
(f)为f(x)在[a,b]上的全变差或总变差。



性质
编辑
1.单调函数是有界变差函数.
2.有限个有界变差函数的和、差、乘积仍为有界变差函数.
3.两个有界变差函数之商(分母不为零)仍为有界变差雨数.
4.(Jordan分解定理)f为[a,b]上的有界变差函数的充要条件是f可表为两个不减的非负函数之差.
5.(Lebesgue) 若f是[a,b]上的单凋函数.则f在[a,b]上几乎处处可微。
7.若f(x)是[a,b]上的有界变差函数,则∣f(x)∣在[a,b]上必为有界变差函数;
8.设f(x)是[a,b]上的有界变差函数,且a<c<b,则f(x)在[a,c]和[c,b]上均为有界变差函数,且有
(f)=
(f)+
(f);



9.设f(x),g(x)都是[a,b]上有界变差函数,α、β为两个常数,则αf(x)+βg(x)是[a,b]上的有界变差函数;
10.设f(x),g(x)都是[a,b]上有界变差函数,则f(x)g(x)在[a,b]上亦为有界变差函数;