python pandas IO tools 之csv文件读写
英文原文:pandas IO tools
读取csv文件:pd.read_csv(),写入csv文件:pd.to_csv()
pandas还可以读取一下文件:
read_csv,
read_excel,
read_hdf,
read_sql,
read_json,
read_msgpack (experimental),
read_html,
read_gbq (experimental),
read_stata,
read_sas,
read_clipboard,
read_pickle;
相应的写入:
to_csv,
to_excel,
to_hdf,
to_sql,
to_json,
to_msgpack (experimental),
to_html,
to_gbq (experimental),
to_stata,
to_clipboard,
to_pickle.
常用参数的读取csv文件
import pandas as pd
obj=pd.read_csv('f:/ceshi.csv')
print obj
print type(obj)
print obj.dtypes
- 1
Unnamed: 0 c1 c2 c3
0 a 0 5 10
1 b 1 6 11
2 c 2 7 12
3 d 3 8 13
4 e 4 9 14
<class 'pandas.core.frame.DataFrame'>
Unnamed: 0 object
c1 int64
c2 int64
c3 int64
dtype: object
- 1
ceshi.csv为有列索引没有行索引的数据,read_csv会自动加上行索引,即使原数据集有行索引。
read_csv读取的数据类型为Dataframe,obj.dtypes可以查看每列的数据类型
obj_2=pd.read_csv('f:/ceshi.csv',header=None,names=range(2,5))
print obj_2
- 1
2 3 4
0 c1 c2 c3
1 0 5 10
2 1 6 11
3 2 7 12
4 3 8 13
5 4 9 14
- 1
header=None时,即指明原始文件数据没有列索引,这样read_csv为自动加上列索引,除非你给定列索引的名字。
obj_2=pd.read_csv('f:/ceshi.csv',header=0,names=range(2,5))
print obj_2
- 1
2 3 4
0 0 5 10
1 1 6 11
2 2 7 12
3 3 8 13
4 4 9 14
header=0,表示文件第0行(即第一行,python,索引从0开始)为列索引,这样加names会替换原来的列索引。
obj_2=pd.read_csv('f:/ceshi.csv',index_col=0)
print obj_2
c1 c2 c3
a 0 5 10
b 1 6 11
c 2 7 12
d 3 8 13
e 4 9 14
obj_2=pd.read_csv('f:/ceshi.csv',index_col=[0,2])
print obj_2
- 1
c1 c3
c2
a 5 0 10
b 6 1 11
c 7 2 12
d 8 3 13
e 9 4 14
index_col为指定数据中哪一列作为Dataframe的行索引,也可以可指定多列,形成层次索引,默认为None,即不指定行索引,这样系统会自动加上行索引(0-)
obj_2=pd.read_csv('f:/ceshi.csv',index_col=0,usecols=[0,1,2,3])
print obj_2
c1 c2 c3
a 0 5 10
b 1 6 11
c 2 7 12
d 3 8 13
e 4 9 14
- 1
obj_2=pd.read_csv('f:/ceshi.csv',index_col=0,usecols=[1,2,3])
print obj_2
- 1
c2 c3
c1
0 5 10
1 6 11
2 7 12
3 8 13
4 9 14
- 1
- usecols:可以指定原数据集中,所使用的列。在本例中,共有4列,当usecols=[0,1,2,3]时,即选中所有列,之后令第一列为行索引,当usecols=[1,2,3]时,即从第二列开始,之后令原始数据集的第二列为行索引。
obj_2=pd.read_csv('f:/ceshi.csv',index_col=0,nrows=3)
print obj_2
- 1
c1 c2 c3
a 0 5 10
b 1 6 11
c 2 7 12
- 1
nrows:可以给出从原始数据集中的所读取的行数,目前只能从第一行开始到nrows行。
datetime handing 数据中日期处理
obj_3=pd.read_csv('f:/ceshi_date.csv',index_col=0,)
print obj_3
print type(obj_3.index)
- 1
- 2
- 3
A B C
date
20090101 a 2 3
20090102 b 3 4
20090103 c 4 5
<class 'pandas.indexes.numeric.Int64Index'>
- 11
obj_3=pd.read_csv('f:/ceshi_date.csv',index_col=0,parse_dates=True)
print obj_3
print type(obj_3.index)
- 1
A B C
date
2009-01-01 a 2 3
2009-01-02 b 3 4
2009-01-03 c 4 5
<class 'pandas.tseries.index.DatetimeIndex'>
- 1
parse_dates=True:可令字符串解析成时间格式。
data='date,value,cat\n1/6/2000,5,a\n2/6/2000,10,b\n3/6/2000,15,c'
print data
- 1
date,value,cat
1/6/2000,5,a
2/6/2000,10,b
3/6/2000,15,c
- 1
from StringIO import StringIO
print pd.read_csv(StringIO(data),parse_dates=[0],index_col=0)
- 1
value cat
date
2000-01-06 5 a
2000-02-06 10 b
2000-03-06 15 c
- 1
print pd.read_csv(StringIO(data),parse_dates=[0],index_col=0,dayfirst=True)
- 1
value cat
date
2000-06-01 5 a
2000-06-02 10 b
2000-06-03 15 c
- 1
US常用时间格式:MM/DD/YYYY,dayfirst=True:可将其改为DD/MM/YYYY
分隔符和阈值
tem='id|level|category\npatient1|123,000|x\npatient2|23,000|y\npatient3|1,234,018|z'
print tem
- 1
id|level|category
patient1|123,000|x
patient2|23,000|y
patient3|1,234,018|z
- 1
print pd.read_csv(StringIO(tem),sep='|')
- 1
id level category
0 patient1 123,000 x
1 patient2 23,000 y
2 patient3 1,234,018 z
- 1
print pd.read_csv(StringIO(tem),sep='|',thousands=',')
- 1
id level category
0 patient1 123000 x
1 patient2 23000 y
2 patient3 1234018 z