进程池:
from multiprocessing import Pool # 进程池 from multiprocessing.dummy import Pool as ThreadPool # 线程池
但pool.join()必须使用在pool.close()或者pool.terminate()之后。
其中close()跟terminate()的区别在于close()会等待池中的worker进程执行结束再关闭pool,而terminate()则是直接关闭。
ThreadPool()和Pool(),默认启动的进程/线程数都为CPU数,如果python获取不到CPU数则默认为1
一般计算(CPU)密集型任务适合多进程,IO密集型任务适合多线程,视具体情况而定,如http请求等等待时间较长的情况就属于IO密集型,让开销更小的线程去等待。
多线程是指一个程序中包含多个执行流,多线程是实现并发的一种有效手段。一个进程在其执行过程中,可以产生多个线程,形成多个执行流。每个执行流即每个线程也有它自身的产生、存在和消亡的过程。
Python中线程multiprocessing使用的同一模块。使用方法也基本相同,唯一不同的是,from multiprocessing import Pool这样导入的Pool表示的是进程池;
Queue模块中的常用方法:
- Queue.qsize() 返回队列的大小
- Queue.empty() 如果队列为空,返回True,反之False
- Queue.full() 如果队列满了,返回True,反之False
- Queue.full 与 maxsize 大小对应
- Queue.get([block[, timeout]])获取队列,timeout等待时间
- Queue.get_nowait() 相当Queue.get(False)
- Queue.put(item) 写入队列,timeout等待时间
- Queue.put_nowait(item) 相当Queue.put(item, False)
- Queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号
- Queue.join() 实际上意味着等到队列为空,再执行别的操作
线程池实例:
import time
from multiprocessing.dummy import Pool as ThreadPool
#给线程池取一个别名ThreadPool
def run(fn):
time.sleep(2)
print fn
if __name__ == '__main__':
testFL = [1,2,3,4,5]
pool = ThreadPool(10)#创建10个容量的线程池并发执行
pool.map(run, testFL)
pool.close()
pool.join()
针对join()函数用法的实例:
# encoding: UTF-8
import threading
import time
def context(tJoin):
print 'in threadContext.'
tJoin.start()
# 将阻塞tContext直到threadJoin终止。
tJoin.join()
# tJoin终止后继续执行。
print 'out threadContext.'
def join():
print 'in threadJoin.'
time.sleep(1)
print 'out threadJoin.'
tJoin = threading.Thread(target=join)
tContext = threading.Thread(target=context, args=(tJoin,))
tContext.start()
- 1
- 2
执行结果:
in threadContext.
in threadJoin.
out threadJoin.
out threadContext.
解析:
主程序中这句tJoin = threading.Thread(target=join)执行后,只是创建了一个线程对象tJoin,但并未启动该线程。
tContext = threading.Thread(target=context, args=(tJoin,))
tContext.start()
- 1
- 2
- 3
上面这两句执行后,创建了另一个线程对象tContext并启动该线程(打印in threadContext.),同时将tJoin线程对象作为参数传给context函数,在context函数中,启动了tJoin这个线程,同时该线程又调用了join()函数(tJoin.join()),那tContext线程将等待tJoin这线程执行完成后,才能继续tContext线程后面的,所以先执行join()函数,打印输出下面两句:
in threadJoin.
out threadJoin.
- 1
- 2
- 3
tJoin线程执行结束后,继续执行tContext线程,于是打印输出了out threadContext.,于是就看到我们上面看到的输出结果,并且无论执行多少次,结果都是这个顺序。但如果将context()函数中tJoin.join()这句注释掉,再执行该程序,打印输出的结果顺序就不定了,因为此时这两线程就是并发执行的。